BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
FIG. 1 is a schematic view showing the steps of an easier method for producing an air cushion in a prior art.
FIG. 2 is a schematic view showing the steps of a fabrication method according to an embodiment of the present invention.
FIG. 3 is a schematic view showing the steps of a fabrication method according to an alternative embodiment of the present invention.
FIG. 4 is a schematic view showing the variety of deformation in different impact loading, explaining the reason to associate an air bladder to a cushioning element in a vertical stack configuration.
FIG. 5 is a cross-sectional view showing an alternative embodiment the present invention.
FIG. 6 is a cross-sectional view showing another alternative embodiment the present invention.
FIG. 7 is a cross-sectional view showing a further alternative embodiment the present invention.
FIG. 8 is a cross-sectional view showing a further alternative embodiment the present invention.
FIG. 9 is a cross-sectional view showing a further alternative embodiment the present invention.
FIG. 10 is a cross-sectional view showing a further alternative embodiment the present invention.
FIG. 11 is a cross-sectional view showing a further alternative embodiment the present invention.
FIG. 12 is a cross-sectional view showing a further alternative embodiment the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to FIGS. 2 and 5, a fabrication method according to the present invention includes the steps of inserting a melting inflatable bladder 40 or tube (not shown) together with a cushioning element 22 in a blowing mold 3, inflating the melting inflatable bladder 40 with an air in high pressure, so as to form a bladder 41 with a passage way 42 that confirming the inner shape of the blowing mold 3, and blowing air into the bladder 41 in a first inner pressure; and thereafter sealing the passage way 42 for forming a first air cushion 4 which connects the cushioning element 22 on one side.
The melting inflatable bladder 40 has an upper side and a lower side. Preferably, the cushioning element 22 may have glue or adhesive layer for bonding itself onto the lower side of the melting inflatable bladder 40. However, in an alternative embodiment as shown in FIG. 3, the cushioning element 22 is connected inside the melting inflatable tube 50 or bladder (not shown) and disposed into the blowing mold 30 together. The melting inflatable tube 50 comprises a first inner wall 501 and a second inner side 502.
The inner surface of the blowing mold 30 may comprise a plurality of inward protruding portions 31 for forming a bladder 51 with a plurality of indents or holes 52 and a passage way 53. While blowing air into the bladder 51 in a preset pressure; and thereafter sealing the passage way 53, it is forming an air cushion 5 with multistage shock-absorbing assembly. The walls of the indents or holes 52 have one end connected with the cushioning element 22, so as to inhibit bulging effect and keep the air cushion 5 in a predetermined shape.
Referring to FIG. 4, an air cushion 6 of an embodiment of the present invention for absorbing heel impacts in different athletic activities. The air cushion 6 has a cushioning element 22 connected within an air bladder 60 at the bottom side 222 thereof, to form a vertical stack configuration for providing cushioning force against the heel impacts sequentially. The cushioning element 22 can be a resilient pad which contains a second cushioning material 221, such as liquid, gel cushioning material, air in high pressure, granules cushioning material, polyester elastomer or the like.
The air bladder 60 has a upper surface 61 for absorbing some lighter impacts 66 and 67 in walking exercise. When a wearer is walking, the heel strike yielding a plurality of impacts ranging from 0 to 1.5 times the body weight, therefore the heel imposes the impacts 66 or 67 onto the upper surface 61. As the upper surface 61 provides cushioning effect on the heel with no rib, therefore the wearer would feel comfortable without paining by the ribs and the vertical walls of the conventional air cushion as being depicted in FIG. 1.
When the wearer is running or taking some other strenuous activities, the impact 68 may increase up to 2-3 times the body weight, this causes the air bladder 60 to be bottom out and deforms the upper portion of the cushioning element 22. By this way, while the air bladder 60 is bottom out, the cushioning element 22 provides a cushioning force to protect the heel from injury.
Referring to FIG. 6, an air cushion 4′ comprises a first air bladder 41′ and a resilient pad 43. The air bladder 41′ provides a softer cushioning force for cushioning lighter impacts from a wearer's walking exercise until being bottom out, and provides cushioning force together with the resilient pad 43 to absorb some stronger impacts from running or some other strenuous athletic activities.
Referring to FIG. 7, an alternative embodiment of air cushion 4″ comprises a first air bladder 41″ and a cushioning element 22 in a vertical stack configuration. The cushioning element 22 comprises a resilient pad 225 combined or attached with a second air bladder 226 which contains a second inner pressure. The first air bladder 41″ contains a first inner pressure relatively lower than the second inner pressure thereby to absorb the impact on wear's heel from walking until being bottom out; and thereafter to absorb even more stronger impact together with the second air bladder 226. Once the first air bladder 41″ and the second air bladder 226 are sequentially becoming bottom out, the resilient pad 225 provides a resilient force to buffer the impact, thereby to protect the wearer from possible lower extremity injuries.
Referring to FIG. 8, an alternative embodiment of air cushion 71 with multistage shock-absorbing assembly, comprises an air bladder 710 with a cushioning element 711 disposed therein, and a resilient pad 712 attached thereon. The cushioning element 711 may be a bladder filled with gel, foam, a particulate material, a liquid, or the like. The resilient pad 712 may be an air bladder, a polyester elastomer, fabric, a bladder filled with gel, foam, a particulate material, a liquid, or the like.
Referring to FIG. 9, a further alternative embodiment of air cushion 72 with multistage shock-absorbing assembly, comprises a first air bladder 721, a second air bladder 722, and a plurality of tying elements 723, that connected therebetween in a vertical stack configuration. The second air bladder 722 has one side attached to the inner wall of the first air bladder 721, and other side connected to the inner wall of the first air bladder 721 via the plurality of tying elements 723, so as to keep the outer surface in flatten or in a predetermined shape without bulging out accidentally. The plurality of tying elements 723 can be a pile of yarns or fabric which is glued between the inner wall of the and the first air bladder 721 and the outside of the second air bladder 722 for eliminating possible bulging effect on outside of the air cushion 72.
Referring to FIGS. 4 and 10, a simplified alternative embodiment of air cushion 73 with multistage shock-absorbing assembly, comprises a first air bladder 731 encapsulated in a second air bladder 732 in a vertical stack configuration.
Referring to FIG. 11, a refined alternative embodiment of air cushion 74 with multistage shock-absorbing assembly, comprises a first air bladder 741, a cushioning element 742, a upper frame 743, and a base frame 744 in a vertical stack configuration.
Referring to FIG. 11, the cushioning element 742 may be resilient pad attached on the lower inner side of the first air bladder 741. The first air bladder 741 is contained the cushioning element 742 and can be fixed between the upper frame 743 and the base frame 744. The first air bladder 741 is formed with a plurality inward protruded walls 7410 connected with the outer surface of the cushioning element 742 for acting as tying element to eliminate bulging of the upper surface of the air cushion 74.
Referring to FIG. 12, the cushioning element 80 with multistage shock-absorbing assembly, comprises a first air bladder 81, a tying element 811, and a second air bladder 82. The tying element 811 is connected between the inner side of the first air bladder 81 which has a first passage way for fill into a first inner pressure P1, and the outside of the second air bladder 82. The second air bladder 82 has a plurality of tying elements 821 formed therein, and a second passage way for fill compressible fluid into a second inner pressure P2. Preferably, the second inner pressure P2 of the second air bladder 82 is relative higher than the first inner pressure P1, thereby to absorb lighter impacts in normal walking exercise by the first air bladder 81, and absorb even more heaver impacts in running or strenuous athletic activity together with the second air bladder 82.
The tying elements 821 may be a plurality of inward protruding walls which connect the upper and lower inner walls of the second air bladder 82 and keep the outer surface of the second air bladder 82 in a predetermined shape.
The inward protruding walls functioning as tying elements 821 may be formed by a blowing mold with small pins that forming a plurality of indent or small holes on the second air bladder 82.
While the invention has been described by way of example and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.