The disclosure relates to systems and methods for detecting air in an infusion system.
Existing systems and methods for detecting air in the line of an infusion device generally involve the use of ultrasonic sensors that detect the open circuit caused when air fills the volume between two sensor pairs. When the air sensor signal moves beyond a pre-defined air/fluid threshold, an alarm condition occurs and IV infusion is paused. Unfortunately, a variety of situations exist which either mask the presence of air, leading to false negatives, or generate false alarms. Fundamentally, this problem occurs because a single sensor with a univariate signal is applied to a relatively complex problem with multiple dimensions.
A system and method is needed which more accurately detects air in the line of an infusion device.
In one embodiment of the disclosure, a method for detecting air in a chamber of an infusion system is disclosed. In one step, a plunger is moved against a chamber containing fluid with an actuator device. In another step, a force acting on the plunger, as it moves against the chamber, is detected with a sensor. In an additional step, a measurement of the force acting on the plunger is electronically communicated from the sensor to a processor. In yet another step, a determination is made, with the processor, that the chamber contains air when: (1) a trigger event occurs in which a change in the force exceeds a threshold; and (2) subsequent to the trigger event a differential between a baseline average force acting on the plunger and a current average force acting on the plunger exceeds an expected force differential within a defined delay range.
In another embodiment of the disclosure, a method for detecting air in a chamber of an infusion system is disclosed. In one step, a plunger is moved against a chamber containing fluid with an actuator device. In another step, a force acting on the plunger, as it moves against the chamber, is detected with a sensor. In an additional step, a measurement of the force acting on the plunger is electronically communicated from the sensor to a processor. In yet another step, the processor is used to determine: (1) a baseline force profile; (2) a current force profile representing the current force acting on the plunger against the chamber; (3) a difference between the current force profile and the baseline force profile; and (4) that the chamber contains air when the calculated difference crosses a threshold.
In still another embodiment of the disclosure, a method for detecting air in a chamber of an infusion system is disclosed. In one step, a plunger is moved against a chamber containing fluid using an actuator device. In another step, a force acting on the plunger, as it moves against the chamber, is detected with a sensor. In yet another step, a measurement of the force acting on the plunger is electronically communicated from the sensor to a processor. In another step, the processor is used to: (1) preprocess a force profile detected by the sensor; (2) extract features from the force profile; and (3) classify the force profile as being an air force profile or a liquid force profile based on the extracted features of the force profile.
These and other features, aspects and advantages of the disclosure will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the disclosure. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the disclosure, since the scope of the disclosure is best defined by the appended claims. It is noted that the Figures are purely for illustrative purposes and are not to scale.
The instant disclosure provides methods and apparatus for determining whether air is present in an infusion system. Several types of pumps, such as Symbig™, Plum™, and Gemstar™ pumps sold by Hospira, Inc., involve the use of a cassette with a chamber that is compressed by an actuated plunger to pump fluid at a controlled rate from the drug container to the patient. The chamber is surrounded by valves which open and close in a complimentary manner to ensure unidirectional flow. The measured force during a pumping cycle is directly related to the type of fluid in the chamber. Fluids are relatively incompressible and generate a higher and different force profile than air. Similarly, a combination of fluid and air in the chamber results in a hybrid shape profile which is indicative of the mixture percentages of both fluid and air. The instant disclosure discloses algorithms for utilizing the plunger force to detect the presence of air in the chamber to detect an air embolism prior to its infusion into a patient.
In one embodiment of the disclosure, an event detection algorithm is disclosed which determines a change from fluid to air in the pumping chamber on the basis of a change in the average force exerted against the plunger. The algorithm utilizes a derivative spike for event detection and a systematic reduction in the average force to confirm the nature of the change.
In another embodiment of the disclosure, a pattern recognition system/method is provided for recognizing fluid, air, or a mixture thereof in a pumping chamber. The system normalizes the force signal/profile acting on the plunger against the chamber to a baseline. The system then preprocesses the force signal/profile to smooth and re-samples the x-axis to a standard sampling interval with respect to plunger position. The system then extracts features such as the maximum absolute difference between the baseline and each subsequent force profile, or other types of features. The system then classifies the force profile as being air, fluid, or a combination thereof using linear discriminate analysis or another type of analysis system/method.
In still another embodiment of the disclosure, a varied pattern recognition system/method is provided for recognizing fluid, air, or a mixture thereof in a pumping chamber. The system, without normalizing to a baseline, preprocesses the force signal/profile acting on the plunger against the chamber by applying a low pass filter or by applying another type of preprocessing system/method. The system then extracts features from the entire force profile or a subset thereof such as the signal frequency content, the signal phase, the standard deviation or variance, the maximum, the range, the plunger position of critical points, the scores based on a principal component analysis, or extracts other types of features. The system then classifies the force profile as being air, fluid, or a combination thereof using linear discriminate analysis, k-nearest-neighbor, support vector machines, or another type of analysis system/method.
One or more systems/methods of the disclosure include components that are optimized/customized according to a delivery rate of the fluid within the pumping chamber. Some of the existing algorithms fail to account for the profound impact of delivery rate on the observed plunger sensor force profile and the detection electronics. One or more systems/methods of the disclosure provide normalization or clustering states that reduce this impact and thereby improve sensitivity.
One or more systems/methods of the disclosure may be combined with any existing systems/methods for detecting air in an infusion system to improve the reliability of air detection systems. For instance, many current systems/methods use acoustic or ultrasonic sensors to detect the presence of air in tubing segments. However, these systems/methods often do not consider the possibility of an acoustic short circuit or a bubble that is stuck or repetitively passes in front of the sensor. Many systems/methods rely on a single air ultrasonic sensor with a fixed threshold which separates the air sensor signal into two regions representing air and fluid. When a voltage is measured that is within the air signal region, the volume of air represented by the signal is accumulated until an alarm condition is met. The disclosure allows for the combination of the output of a force sensor signal with one or more air sensors to improve the reliability of existing air detection systems/methods. In doing so, the disclosed system/method does not require additional hardware modifications but instead leverages the acquired force signal. Additionally, the disclosure does not necessarily require the replacement of existing software modules for air detection but adds an additional safety and/or reliability layer to improve the robustness of existing air detection systems and methods.
The pump 106 may comprise a plunger based pump, a peristaltic pump, or another type of pump. The chamber 108 comprises an inner cavity of the pump 106 into which fluid from the fluid supply container 102 is pumped into and through due to the moveably disposed plunger 107 moving against the chamber 108 as a result of the actuator device 109. The actuator device 109 may comprise a motor or another type of actuating device for moving the plunger 107 against the chamber 108. The sensor 110 is contained within the chamber 108 and detects the force acting on the plunger 107 as it moves against the chamber 108. The sensor 110 may comprise a force sensor signal comprising a pressure sensor, an elastic column, a strain gauge, or a piezoelectric crystal force transducer. The positional sensor 112 is used to determine a position of the plunger 107 against the chamber 108. The positional sensor 112 may comprise an encoder or may utilize the expected position based upon the commands sent to the actuator.
The processing device 114 is in electronic communication with the pump 106, the actuator device 109, the sensor 110, the positional sensor 112, the non-transient memory 116 storing the programming code 118, the clock 120, the alarm 122, and the input/output device 124. The processing device 114 comprises a processor for processing information received from the pump 106, the sensor 110, the positional sensor 112, and the clock 120, and for executing a software algorithm, contained in the programming code 118 stored in the non-transient memory 116, to determine if air, liquid (fluid), or a combination thereof is located in the chamber 108 of the pump 106. The non-transient memory 116 may be located within or outside of the processing device 114.
The clock 120 keeps time of activities of the drug delivery infusion system 100 including the plunger 107, the sensor 110, the positional sensor 112, and its other components. The alarm 122, when triggered by the processing device 114, is configured to notify the clinician as to the presence of air in the chamber 108, and to stop the pump 106 prior to an air embolism being delivered through the fluid delivery line 104 and the delivery/extraction device 126 to the patient 128. The input/output device 124 comprises a device which allows a clinician to input information, such as a user-inputted medication infusion program, to the processing device 114, and which also outputs information to the clinician. The delivery/extraction device 126 comprises a patient vascular access point device for delivering fluid from the fluid supply container 102 to the patient 128, or for extracting blood from the patient 128. The delivery/extraction device 126 may comprise a needle, a catheter, or another type of delivery/extraction device.
In one embodiment of the disclosure, the drug delivery infusion system 100 of
Corresponding
In step 134, the method starts. After step 134, in step 136 a determination is made as to whether the end-of-bag (EOB), or equivalent situation in which the chamber contains air, has been detected. If the answer to the determination in step 136 is ‘yes’ and the end of the bag has been detected, the method proceeds to step 138 and an end-of-bag alarm is turned on to indicate that air is in the chamber. This end-of-bag (EOB) event may pause the pump infusion or be used by another algorithm to qualify an air-in-line alarm. If the answer to the determination in step 136 is ‘no’ and the end of the bag has not been detected, the method proceeds to step 140 in which a determination is made as to whether there is a previously confirmed peak. If the answer to the determination in step 140 is ‘yes’ and there is a confirmed peak, the method proceeds to step 142 which is discussed more thoroughly below. If the answer to the determination in step 140 is ‘no’ and there is not a previously confirmed peak, the method proceeds to step 144 in which a determination is made as to whether a trigger event has occurred in which the current negative derivative (of the average force) D(i) of the force of the plunger per delivered volume of the fluid exiting the chamber exceeds a derivative threshold Dth which indicates the beginning of a possible end-of-bag (EOB) event signifying that air may have entered the chamber. It should be noted that variable i is initially set to 1. The derivative threshold Dth is flow dependent. The derivative threshold Dth may be set to 1.5 for a flow rate of the fluid below 200 milliliters per hour and to 3.0 for a flow rate of the fluid above 200 milliliters per hour. In other embodiments, the derivative threshold Dth may be varied as a direct function of flow rate.
If the answer to the determination in step 144 is ‘no,’ the method proceeds to step 146, increments variable i using the equation i=i+1, and then proceeds back to and repeats step 136. If the answer to the determination in step 144 is ‘yes,’ the method proceeds to step 148 and increments variable P applying using the equation P=P+1. It should be noted that variable P is initially set to 0. After step 148, the method proceeds to step 150 in which a determination is made as to whether variable P is greater than the consecutive point threshold Pth. In one embodiment, the consecutive point threshold Pth is set to 1. In other embodiments, the consecutive point threshold Pth may be varied. The consecutive point threshold Pth represents one less than the number of consecutive points P that the current negative derivative (average) D(i) of the force of the plunger versus volume of the fluid delivered must exceed a derivative threshold Dth in order to indicate a possible end-of-bag (EOB) event signifying that air may be in the chamber. If the answer to the determination in step 150 is ‘no,’ the method proceeds to step 146, increments i applying the equation i=i+1, and then proceeds back to and repeats step 136. If the answer to the determination in step 150 is ‘yes,’ the method proceeds to step 152 in which the peak is confirmed, and a baseline B is taken.
The baseline B represents the average force during infusion when the chamber is filled with fluid. In one embodiment, the baseline B comprises the average force acting on the plunger over a defined baseline range occurring up to the trigger event. In one embodiment, the defined baseline range comprises the immediately previous 100 micro liters of average force data on the plunger taken immediately previous and up to the trigger event. In one embodiment, the baseline range may comprise multiple cycles of average force data. In other embodiments, the baseline range may vary. The trigger event comprises the point at which the negative derivative force D(i) acting on the plunger per the delivered volume of the fluid exiting the chamber first exceeds the derivative threshold Dth so long as subsequently the number of consecutive measured points P of the cycle of the plunger from the trigger event, in which the negative derivative force D(i) acting on the plunger per the delivered volume of the fluid exiting the chamber continues to exceed the derivative threshold Dth, exceeds the consecutive point threshold Pth. In other embodiments, the trigger event may vary. After step 152, the method proceeds to step 146, increments variable i using the equation i=i+1, and then proceeds back to and repeats step 136.
As referred to earlier, if the answer to the determination in step 140 is ‘yes’ and there is a confirmed peak, the method proceeds to step 142 and increments the delay points DP using the equation delay points=delay points+1. The delay points are initially set to zero. The delay points represent the number of data points taken of the cycle of the plunger since the confirmed peak. After step 142, the method proceeds to step 154 and makes a determination as to whether the differential between the baseline B and the current average force σ(i) is greater than the expected force differential Δ. The current average force σ(i) comprises the current average force on the plunger taken over a certain number of points of the cycle up to the current point of the plunger. In one embodiment, the current average force on the plunger may be calculated based on two cycles of the plunger immediately preceding and up to the current point of the plunger. In other embodiments, the current average force on the plunger may be taken over a varied range. In one embodiment, the expected force differential Δ comprises 0.15 pounds of force. In other embodiments, the expected force differential Δ may vary.
If the answer to the determination in step 154 is ‘yes,’ the method proceeds to step 156, confirms that an end-of-bag (EOB) or equivalent event has occurred, and proceeds through steps 146, 136, and 138 to turn on the end-of-bag alarm to indicate that air is in the chamber. This end-of-bag (EOB) event may turn off the pump. If the answer to the determination in step 154 is ‘no,’ the method proceeds to step 158 and makes a determination as to whether the delay points DP is greater than a Δ delay point threshold. The Δ delay point threshold comprises a defined delay range, starting from the point of the trigger event, over which the differential between the baseline B and the current average force σ(i) must exceed the expected force differential Δ in order to determine that an end-of-bag (EOB) event has occurred. In one embodiment, the Δ delay point threshold comprises 200 micro liters of delivered fluid. In other embodiments, the Δ delay point threshold may vary.
If the answer to the determination in step 158 is ‘no,’ the method proceeds to step 146, increments variable i using the equation i=i+1, and then proceeds back to and repeats step 136. If the answer to the determination in step 158 is ‘yes,’ the method proceeds to step 160, determines that there is no confirmed peak, determines that there is no end-of-bag (EOB) event, resets the delay points DP to zero, proceeds to step 146, increments variable i using the equation i=i+1, and then proceeds back to and repeats step 136. In other embodiments, one or more steps of the method 132 may be modified, not followed, or one or more additional steps may be added. Moreover, any of the variables of method 132 may be either user set, using an input device, or pre-set into the processor.
The method of
In step 136, a determination is made that the end-of-bag (EOB) has not been detected for measured point 19. The method then proceeds to step 140 and determines that there is a confirmed peak for measured point i=19. The method then proceeds to step 142 and increments the delay points DP to 1. The method then proceeds to step 154 and determines that the differential between the baseline B and the current average force σ(i) for measured point i=19 is not greater than the expected force differential Δ. The method then proceeds to step 158 and determines that the delay points DP of 1 is not greater than the Δ delay point threshold comprising the number of measured points in the cycle of the plunger, starting from the trigger event, within 200 micro liters of fluid delivered from the chamber. The method then proceeds to step 146, increments i and proceeds back to and repeats step 136. The method continues to loop through steps 136, 140, 142, and 154 until it is determined in step 154 that the differential between the baseline B and the current average force σ(i) for measured point i=23 is greater than the expected force differential Δ. The method then proceeds to step 156, confirms that an end-of-bag (EOB) event has occurred, and proceeds through steps 146, 136, and 138 to turn on the end-of-bag alarm to indicate that air is in the chamber. The end-of-bag alarm being turned on may further comprise pausing the infusion.
The method of
In step 182 a plunger is moved with an actuator device against a chamber containing fluid. In step 184 a force acting on the plunger is detected with a sensor as the plunger moves against the chamber. In step 186 a measurement of the force is electronically communicated from the sensor to a processor. In step 187 a determination is made, with the processor, that the chamber contains air when: (1) a trigger event occurs in which a change in force acting on the plunger per delivered volume of the fluid exiting the chamber exceeds a threshold; and (2) subsequent to the trigger event a differential between a baseline average force acting on the plunger and a current average force acting on the plunger exceeds an expected force differential within a defined delay range. In step 188 the processor turns on an alarm when the processor determines that the chamber contains the air. Step 188 may further comprise shutting down the pump when the alarm is turned on.
In one embodiment of step 187 step (1), which must occur for the processor to determine that the chamber contains air, may further comprise for a consecutive number of measured points of a cycle of the plunger from the trigger event the derivative force acting on the plunger per the delivered volume of the fluid exiting the chamber continuing to exceed the derivative threshold for more than a threshold number of the measured points of the cycle of the plunger against the chamber. In one embodiment of step 187 the baseline average force of step (2) may comprise the average force acting on the plunger over a defined baseline range occurring up to the trigger event. The baseline average force may further represent the chamber being filled with the fluid. In other embodiments, any of the steps of method 180 may be altered, not followed, or additional steps may be added.
In another embodiment of the disclosure, the drug delivery infusion system 100 of
An algorithm has been discovered that normalizes a force shape profile of a plunger by determining a baseline force profile specific to each infusion program, and by using one generic feature, independent of the infusion program/rate, to assess whether air is contained in the chamber. To implement the algorithm, each force shape profile of the plunger is compared to a baseline force profile, a point-by-point difference between the force shape profile and the baseline force profile is determined, and when the minimum (most negative) difference between the force shape profile and the baseline force profile drops below a threshold a determination is made that the chamber contains air. The baseline force profile may represent liquid being in the chamber. In other embodiments, varying algorithms may be implemented to determine when air is contained in the chamber based on the force shape profile of the plunger.
In step 222, the method starts. After step 222, the method proceeds through location step 224 to step 226. In step 226, a force profile X(k) of the plunger is acquired for the first cycle of the plunger with k=1 representing the first cycle of the plunger. The force profile X(k) comprises a vector comprising the six forces on the plunger at each of the six positions/points of the plunger during the k cycle of the plunger. In other embodiments, the force profile may be acquired with a varying number of positions of the plunger. The method then proceeds to step 228 and increments the profile count PC using the equation PC=PC+1 with PC initially being 0 the first time through so that PC will be incremented to 1. The method then proceeds to step 230 and determines whether the profile count PC is less than or equal to the number of initial cycles of the plunger to ignore Ni which is set to Ni=2. In other embodiments, Ni may be set to other values.
If step 230 determines that the profile count PC is less than or equal to the number of initial cycles of the plunger to ignore Ni then the method proceeds back to and repeats steps 224, 226, 228, and 230 until the profile count PC is not less than or equal to the number of initial cycles of the plunger to ignore Ni at which point the method proceeds to step 232. In step 232 a determination is made as to whether the baseline count BS_LN_CNT is less than the baseline ready variable BS_LN_RDY. The baseline count BS_LN_CNT is initially set to BS_LN_CNT=0. The baseline ready variable BS_LN_RDY is set to BS_LN_RDY=5. In other embodiments, BS_LN_CNT and BS_LN_RDY may be set to other values. If step 232 determines that BS_LN_CNT is not less than BS_LN_RDY than the method proceeds through location step 234 of
If in step 232 a determination is made that the baseline count BS_LN_CNT is less than BS_LN_RDY than the method proceeds to step 240. In step 240 a determination is made as to whether the Analog-To-Digital-Count (ADC) at that instant is less than the primary threshold for fluid TPRI, and as to whether the profile count PC is greater than the number of initial cycles of the plunger to ignore plus 2 represented by PC being greater than Ni+2. The primary threshold for fluid TPRI is set to 3,000. In other embodiments, the primary threshold for fluid TPRI may be set to other values. If the determination in step 240 is made that either the Analog-To-Digital-Count (ADC) read by an air sensor downstream of the chamber is not less than the primary threshold for fluid TPRI (which means that air is in the chamber), or that the profile count PC is not greater than the number of initial cycles of the plunger to ignore plus 2 (there is a lag of 2 cycles due to the air sensor being located downstream of the chamber) represented by PC being greater than Ni+2, than the method proceeds to step 242, and determines whether the baseline count BS_LN_CNT is greater than 0. In other embodiments, the lag number of cycles used may vary. If step 242 determines that the baseline count BS_LN_CNT is not greater than 0 then the method proceeds back to location step 224 to step 226 and continues the loop. If step 242 determines that the baseline count BS_LN_CNT is greater than 0 then the method proceeds through location step 234 of
If in step 240 the determination is made that either the Analog-To-Digital-Count (ADC) read by an air sensor downstream of the chamber is less than the primary threshold for fluid TPRI (which means that liquid is in the chamber), and that the profile count PC is greater than the number of initial cycles of the plunger to ignore plus 2 (indicating that the lag of 2 cycles, due to the air sensor being located downstream of the chamber, has been completed) represented by PC being greater than Ni+2, then the method proceeds to step 244. In step 244, the accumulated baseline profile Xt is determined using the equation Xt=Xt+X(k−2) (wherein X(k−2) represents the force profile, expressed as a six point vector, for 2 cycles ago due to the air sensor being located downstream of the chamber) wherein Xt is initially set to 0 and k represents the number of the current cycle of the plunger. In other embodiments, the equation for Xt may be varied. After step 244, the method proceeds to step 246 and increments the baseline count BS_LN_CNT using the equation BS_LN_CNT=BS_LN_CNT+1. After step 246, the method proceeds to step 248 and determines the baseline force profile Xm, expressed as a 6 point vector, using the equation Xm=Xt/BS_LN_CNT which averages the force measurements on the plunger taken at times when liquid is in the chamber over the number of baseline count BS_LN_CNT cycles of the plunger. The baseline force profile Xm represents the baseline force vector for a situation in which liquid (fluid) is contained in the chamber 2 cycles prior to the current cycle due to the air sensor being located downstream of the chamber. In other embodiments, the baseline force profile Xm may be calculated using varying equations. After step 248, the method proceeds through location step 234 of
In step 238 of
In step 252, Nw count is incremented using the equation Nw count=Nw count+1 with Nw count initially set to 0. Nw count represents the current number of observed air cycles. After step 252, the method proceeds to step 254 and determines whether Nw count is greater than or equal to Nw with Nw representing the threshold number of consecutive observed air cycles of the plunger after which an air alarm will be turned on indicating that air is contained in the chamber. If a determination is made in step 254 that Nw count is not greater than or equal to Nw than the method proceeds through location step 256 back to location step 224 of
If a determination is made in step 250 that the minimum distance D between the current vector force profile of the plunger and the baseline force vector is greater than the threshold for a given infusion rate Trate, indicating that liquid is contained in the chamber, then the method proceeds to step 260. In step 260, Nw count is reset to 0 with Nw count representing the current number of observed air cycles, and Flag Delta is also reset to 0 with Flag Delta representing that air is present in the chamber. After step 260, the method proceeds to step 262 and determines whether the baseline count BS_LN_CNT is greater than or equal to the baseline ready variable BS_LN_RDY which is set to BS_LN_RDY=5. In other embodiments, the baseline ready variable BS_LN_RDY may be set to other values.
If a determination is made in step 262 that the baseline count BS_LN_CNT is not greater than or equal to the baseline ready variable BS_LN_RDY then the method proceeds through location step 256 back to location step 224 of
Step 264 comprises an adaptive baseline step which allows the user to assert control over the baseline force profile Xm by controlling the forgetting rate a. In other embodiments, the forgetting rate a may be pre-programmed. In still other embodiments, varying ways may be used to calculate the baseline force profile Xm. After step 264 the method proceeds through location step 256 back to location step 224 of
The method 220 of
For the sixth cycle C6 the profile count PC increases to 6 and the accumulated baseline profile Xt is determined because the measured ADC of 1,740 is less than the primary threshold for fluid TPRI of 3,000, and the profile count PC=6 is greater than 4 (Ni+2=2+2=4). At this point in time, the baseline force profile Xm, expressed as a six point vector, is calculated using the equation Xm=Xt/BS_LN_CNT wherein Xt=Xt+X(k−2) and BS_LN_CNT=2. Applying this equation results in the baseline force profile, expressed as a six point force vector, being Xm=(0.584984, 1.234167, 1.947920, 2.556566, 3.103720, 3.818871). The method 220 then determines the minimum distance D between the current vector force profile X(k), where k=6, of the plunger and the baseline force vector using the equation D=min(X(k)−Xm)=min(X(6)−Xm)=min ((0.600387, 1.266444, 1.916179, 2.547273, 3.031686, 3.805076)−(0.584984, 1.234167, 1.947920, 2.556566, 3.103720, 3.818871))=min ((0.600387−0.584984), (1.266444−1.234167), (1.916179−1.947920), (2.547273−2.556566), (3.031686−3.103720), (3.805076−3.818871))=min (0.015402, 0.032277, −0.031741, −0.009293, −0.072035, −0.013795)=−0.072035. Because D=−0.072035 is greater than Trate=−0.3, the method determines that the current cycle/profile is for liquid being in the chamber, and the adaptive baseline, using the forgetting rate α, is not applied because the baseline count BS_LN_CNT=2 is not greater than or equal to the baseline ready variable BS_LN_RDY=5.
When the method reaches the forty-third cycle C43 (the intermediate cycle calculations are not described here in the interest of efficiency) the profile count PC increases to 43 and the accumulated baseline profile Xt is determined because the measured ADC is less than the primary threshold for fluid TPRI of 3,000, and the profile count PC=43 is greater than 4 (Ni+2=2+2=4). At this point in time, the baseline force profile Xm, expressed as a six point vector, is calculated using the equation Xm=Xt/BS_LN_CNT wherein Xt=Xt+X(k−2) and BS_LN_CNT=39. Applying this equation results in the baseline force profile, expressed as a six point force vector, being Xm=(0.507904, 0.882215, 1.642329, 2.326609, 2.893227, 3.623199). The method 220 then determines the minimum distance D between the current vector force profile X(k), where k=43, of the plunger and the baseline force vector using the equation D−min(X(k)−Xm)=min(X(43)−Xm)=min ((0.521021, 0.729376, 1.515777, 2.249448, 2.828867, 3.582641)−(0.507904, 0.882215, 1.642329, 2.326609, 2.893227, 3.623199))=min ((0.521021−0.507904), (0.729376−0.882215), (1.515777−1.642329), (2.249448−2.326609), (2.828867−2.893227), (3.582641−3.623199))=min (0.013117, −0.152839, −0.126552, −0.077161, −0.064360, −0.040558)=−0.152839. Because D=−0.152839 is greater than Trate=−0.3, the method determines that the current cycle/profile is for liquid being in the chamber, and the adaptive baseline, using the forgetting rate α, is determined because the baseline count BS_LN_CNT=39 is greater than or equal to the baseline ready variable BS_LN_RDY=5. Applying the forgetting rate α=0.100000 to calculate the adaptive baseline results in the adaptive baseline Xm=Xm*(1−α)+α* X(k)=(0.509216, 0.866931, 1.629673, 2.318893, 2.886791, 3.619144).
When the method reaches the forty-fourth cycle C44 the profile count PC increases to 44 and the accumulated baseline profile Xt is determined because the measured ADC is less than the primary threshold for fluid TPRI of 3,000, and the profile count PC=44 is greater than 4 (Ni+2=2+2=4). At this point in time, the baseline force profile Xm, expressed as a six point vector, is calculated using the equation Xm=Xt/BS_LN_CNT wherein Xt=Xt+X(k−2) and BS_LN_CNT=40. Applying this equation results in the baseline force profile, expressed as a six point force vector, being Xm=(0.509216, 0.866931, 1.629673, 2.318893, 2.886791, 3.619144). The method 220 then determines the minimum distance D between the current vector force profile X(k), where k=44, of the plunger and the baseline force vector using the equation D−min(X(k)−Xm)=min(X(44)−Xm)=min ((0.616675, 0.690732, 0.974907, 1.446447, 2.064309, 3.097704)−(0.509216, 0.866931, 1.629673, 2.318893, 2.886791, 3.619144))=min ((0.616675−0.509216), (0.690732−0.866931), (0.974907−1.629673), (1.446447−2.318893), (2.064309−2.886791), (3.097704−3.619144))=min (0.107459, −0.176199, −0.654767, −0.872446, −0.822482, −0.521439)=−0.872446. Because D=−0.872446 is not greater than Trate=−0.3, the method determines that the current cycle/profile is for air being in the chamber and increments Nw count to Nw count+1=0+1=1.
When the method reaches the forty-fifth cycle C45 the profile count PC increases to 45 and the accumulated baseline profile Xt is determined because the measured ADC is less than the primary threshold for fluid TPRI of 3,000, and the profile count PC=45 is greater than 4 (Ni+2=2+2=4). At this point in time, the baseline force profile Xm, expressed as a six point vector, is calculated using the equation Xm=Xt/BS_LN_CNT wherein Xt=Xt+X(k−2) and BS_LN_CNT=41. Applying this equation results in the baseline force profile, expressed as a six point force vector, being Xm=(0.509216, 0.866931, 1.629673, 2.318893, 2.886791, 3.619144). The method 220 then determines the minimum distance D between the current vector force profile X(k), where k=45, of the plunger and the baseline force vector using the equation D=min(X(k)−Xm)=min(X(44)−Xm)=min ((0.613084, 0.674059, 0.891756, 1.421075, 1.990083, 2.859728)−(0.509216, 0.866931, 1.629673, 2.318893, 2.886791, 3.619144))=min ((0.613084−0.509216), (0.674059−0.866931), (0.891756−1.629673), (1.421075−2.318893), (1.990083−2.886791), (2.859728−3.619144))=min (0.103868, −0.192872, −0.737917, −0.897818, −0.896708, −0.759415)=−0.897818. Because D=−0.897818 is not greater than Trate=−0.3, the method determines that the current cycle/profile is for air being in the chamber, increments Nw count to Nw count+1=1+1=2, sets FlagDelta=1, and signals an air alarm indicating that air is in the chamber.
The method of
In step 282 a plunger is moved, with an actuator device, acting against a chamber containing fluid. In step 284, a sensor is used to detect a force acting on the plunger as it moves against the chamber. In step 286 a measurement of the force is electronically communicated from the sensor to a processor. In step 288 the processor determines: (1) a baseline force profile; (2) a current force profile representing the current force acting on the plunger against the chamber; (3) a difference between the current force profile and the baseline force profile; and (4) that the chamber contains air when the calculated difference crosses a threshold. In step 290 the processor turns on an alarm when the processor determines that the chamber contains the air. Step 290 may further comprise shutting down the pump when the alarm is turned on.
In one embodiment, the baseline force profile represents the chamber being filled with the fluid. In another embodiment, the processor determines the baseline force profile by taking force measurements at a plurality of plunger positions over a cycle of the plunger against the chamber. In an additional embodiment, the processor determines the baseline force profile by averaging force measurements taken over a plurality of cycles of the plunger against the chamber. In yet another embodiment, the processor determines the baseline force by additionally taking into account the current force profile acting on the plunger during a current cycle of the plunger against the chamber.
In still another embodiment, the processor further applies a forgetting rate, moving average or Kalman filter which controls what portion of the updated baseline force profile is made up of the average or estimated baseline force measurements and what portion of the updated baseline force profile is made up of the current force profile. In an additional embodiment, the processor determines the current force profile by taking force measurements at a plurality of plunger positions over a current cycle of the plunger against the chamber. In another embodiment, the processor calculates the difference between the current force profile and the baseline force profile by calculating respective differences between a plurality of points of the current force profile relative to a respective plurality of points of the baseline force profile, and determining a minimum difference of the respective differences or an absolute maximum difference of the respective differences. In an additional embodiment, the processor determines that the chamber contains the air when the minimum difference is less than the threshold. In still another embodiment, the processor determines that the chamber contains the air when the calculated difference is below the threshold. In other embodiments, any of the steps of the method 280 may be altered, not followed, or additional steps may be added.
In step 302, the method 300 starts. After step 302, the method proceeds through location step 304 to step 306. In step 306 a force profile over one cycle of a plunger of the chamber is acquired using the sensor. In one embodiment, as shown in box 308, the sampling frequency may be 62.5 Hz. In other embodiments, varying parameters may be used. After step 306, the method proceeds to step 310 and re-samples the force profile for the cycle of the plunger at uniform increments with respect to position or at specific positions. In one embodiment, as shown in box 312, the re-sampling may take place over a set of angles and may be performed using linear, quadratic or cubic interpolation. In other embodiments, varying parameters may be used. After step 310, the method proceeds to step 314 and selects a sub-set of angles (i.e. one or more ranges). In one embodiment, as shown in box 316, the sub-set of angles may comprise a range of angles based on the infusion rate. In other embodiments, varying parameters may be used. After step 314, the method proceeds to step 318 and calculates a derivative. In one embodiment, as shown in box 320, this step may comprise simultaneously applying a smoothing operation. In other embodiments, this step may comprise applying varying parameters. Steps 306 through 318 comprise acquisition and preprocessing steps.
After step 318, the method proceeds to step 322 and calculates scores using the equation S=D*M where D comprises the derivative and M comprises a set of N eigenvectors by infusion rate, as shown in box 324, calculated using principal component analysis. In one embodiment, N=8. In other embodiments, the scores may be calculated using varying parameters. After step 322, the method proceeds to step 326 and applies a linear determinate analysis to calculate L=S*W where L represents the linear determinate result, S represents the scores, and W, as shown in box 328, represents weights of the linear discriminate analysis. In one embodiment, as shown in box 328, this step may also consider class means by infusion rate. In other embodiments, varying parameters may be used. After step 326, the method proceeds to step 330 and determines a classification based on the result of the linear discriminate analysis. This step may also consider class means by infusion rate as shown in box 328. After step 330, the method proceeds to step 332 and determines whether air is in the chamber based on the classification. If step 332 determines that air is contained in the chamber then the method proceeds to step 334 and sounds an air alarm during which the pump may be shut down. If step 332 determines that air is not in the chamber based on the classification then the method proceeds back to location step 304.
In an alternative embodiment, instead of steps 322 and steps 326 a linear determinate analysis may be conducted, as shown in box 336, using the equation L=D*(M*W)−D*P wherein P=M*W and the variables are identical to those described above. In another alternative embodiment, instead of steps 306 through steps 318, preprocessing steps 338, 340, 342, 344, and 346 may be followed. In step 338, a force profile of the plunger over one cycle of a plunger of the chamber is acquired using the sensor. In one embodiment, as shown in box 308, the sampling frequency may be 62.5 Hz. In other embodiments, varying parameters may be used. In step 340, a low pass filter is applied. In step 342, a re-sampling is done. In one embodiment, as shown in box 312, the re-sampling may take place over a set of angles. In other embodiments, varying parameters may be used. In step 344, a range limit is applied. In one embodiment, as shown in box 316, a sub-set of angles comprising a range of angles based on the infusion rate. In other embodiments, varying parameters may be used. In step 346, a difference is calculated. In one embodiment, this difference may comprise determining differences in points of the force profile. In other embodiments, this difference may use varying parameters.
In step 362 a plunger is moved, with an actuator device, against a chamber containing fluid. In step 364 a sensor is used to detect a force acting on the plunger as it moves against the chamber. In step 366 a measurement of the force is electronically communicated from the sensor to a processor. In step 368 the processor: (1) preprocesses a force profile detected by the sensor; (2) extracts features from the force profile; and (3) classifies the force profile as being an air force profile or a liquid force profile based on the extracted features of the force profile. In step 370 the processor turns on an alarm when the processor determines that the chamber contains the air. Step 370 may further comprise shutting down the pump when the alarm is turned on.
In one embodiment, the processor classifies the force profile as being the air force profile or the liquid force profile without applying signal normalization to normalize to a baseline force profile. In another embodiment, the processor further applies a signal normalization to normalize the force profile relative to a baseline force profile. In an additional embodiment, the processor preprocesses the force profile detected by the sensor by: acquiring the force profile; re-sampling the force profile for a set of angles; selecting a sub-set of angles for the force profile; and calculating a derivative of the force profile based on the force profile at the sub-set of angles. In still another embodiment, the processor preprocesses the force profile detected by the sensor by: acquiring the force profile; applying a low pass filter to the force profile; re-sampling the force profile for a set of angles; applying a range limit to the force profile; and calculating a difference of the force profile.
In another embodiment, the processor extracts the features from the force profile by at least one of calculating scores of the force profile or applying a linear discriminate analysis to the force profile. In yet another embodiment, the processor calculates the scores of the force profile by multiplying a derivative of the force profile by a set of eigenvectors, and applies the linear discriminate analysis by multiplying the scores by weights. In an additional embodiment, the processor extracts the features from the force profile using an equation L=D*(M*W)−D*M*W, wherein L=a linear discriminate analysis, D=a derivative, M=a set of eigenvectors, and W=weights. In another embodiment, the processor classifies the force profile as being the air force profile or the liquid force profile based on means of a linear discriminate analysis applied to the force profile. In other embodiments, any of the steps of the method 360 may be altered, not followed, or additional steps may be added.
In another embodiment, features of the force profile are determined preferably on the basis of force changes versus displacement or position but may also be calculated on the basis of time. The features are a characteristic of the profile that is related to the presence of air or other condition that is desired to be known. For example, features may include: the scores from an abstract factor analysis, such as principal components analysis (PCA); the peak magnitude of the force profile; the phase shift with respect to time or position of the force profile; the maximum or minimum value of the first derivative with respect to position; the correlation coefficient of the force profile with exemplary profiles representing air and fluid; the distance (e.g., Euclidean or Mahalanobis distance) between the observed profile and a set of template profiles; ratios and/or differences between one or more points or averaged regions in the force profile; the correlation between the force profile and additional sensor readings (e.g., proximal and distal pressure); variance of the force profile from the mean; and a difference of the force profile from the mean.
Additionally, the features may be viewed as a set of residuals which represent the difference between the force profile or the derivative of the force profile and the expected value. The expected value may be determined using adaptive filtering, such as Kalman filtering, or as a moving or exponentially weighted moving average. In this scheme, a set of channels are defined which represent the observed force profile at a particular position through time. One or more channels are subjected to analysis through time to detect changes in their expected level on the basis of a model, an averaged profile, and/or a problematic network. When either the residual level exceeds a pre-determined threshold or the probability of an air/fluid transition increases beyond a set level, air is indicated in the pumping chamber.
In the case of the derivative based algorithm, an alternate embodiment involves a series of channels as describe above. Each channel is separately filtered through time using a moving average, spike rejection filter and/or a low-pass filter. This provides a multiplicity of signals that vary through time. The set of signals is then subject to the derivative based algorithm in which change detection occurs using an event detection and change confirmation method, as described previously. Since each channel provides an indication of the fluid chamber status, a method is employed to combine the indicators and provide one final indicator. The preferred method is to always utilize the channel that provides the reading that is most associated with air. For example, this may comprise the channel that experienced the high derivative and greatest change through time. Alternately, aggregation of the signals can occur using a voting algorithm, fuzzy logic, decision trees, support vector machines or Bayesian networks.
In another embodiment, the multiple channels described above may be subjected to an N-th order Kalman filter and used to generate a residual from an expected value. A change is detected when the residual exceeds a pre-set threshold. In other embodiments, other methods may be utilized.
One or more systems/methods of the disclosure more accurately detects air in the line of an infusion device than many current systems and methods. The systems/methods of the disclosure may be combined with existing systems/methods for detecting air in an infusion system to improve the reliability of air detection systems. The disclosure allows for the combination of the output of a force sensor signal with one or more air sensors to improve the reliability of existing air detection systems/methods. In doing so, the disclosed system/method does not require additional hardware modifications but instead leverages the acquired force signal. Additionally, the disclosure does not necessarily require the replacement of existing software modules for air detection but adds an additional safety layer to improve the robustness of existing air detection systems and methods.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the disclosure and that modifications may be made without departing from the scope of the disclosure as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3401337 | Beusman et al. | Sep 1968 | A |
3484681 | Grady, Jr. et al. | Dec 1969 | A |
3699320 | Zimmerman et al. | Oct 1972 | A |
3727074 | Keller et al. | Apr 1973 | A |
3731679 | Wilhelmson et al. | May 1973 | A |
3768084 | Haynes | Oct 1973 | A |
3770354 | Tsuruta et al. | Nov 1973 | A |
3778702 | Finger | Dec 1973 | A |
3806821 | Niemeyer et al. | Apr 1974 | A |
3854038 | McKinley | Dec 1974 | A |
3886459 | Hufford et al. | May 1975 | A |
3890554 | Yoshitake et al. | Jun 1975 | A |
3898637 | Wolstenholme | Aug 1975 | A |
3909693 | Yoshitake et al. | Sep 1975 | A |
3910701 | Henderson | Oct 1975 | A |
3911343 | Oster | Oct 1975 | A |
3919608 | Usami et al. | Nov 1975 | A |
3921622 | Cole | Nov 1975 | A |
3933431 | Trujillo et al. | Jan 1976 | A |
3935876 | Massie et al. | Feb 1976 | A |
3966358 | Heimes et al. | Jun 1976 | A |
3971980 | Jungfer et al. | Jul 1976 | A |
3974681 | Namery | Aug 1976 | A |
3990444 | Vial | Nov 1976 | A |
3997888 | Kremer | Dec 1976 | A |
4014206 | Taylor | Mar 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4068521 | Cosentino et al. | Jan 1978 | A |
4114144 | Hyman | Sep 1978 | A |
4151845 | Clemens | May 1979 | A |
4155362 | Jess | May 1979 | A |
4181610 | Shintani et al. | Jan 1980 | A |
4210138 | Jess et al. | Jul 1980 | A |
4213454 | Shim | Jul 1980 | A |
4217993 | Jess et al. | Aug 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4244365 | McGill | Jan 1981 | A |
4256437 | Brown | Mar 1981 | A |
4264861 | Radu et al. | Apr 1981 | A |
4277226 | Archibald et al. | Jul 1981 | A |
4278085 | Shim | Jul 1981 | A |
4280495 | Lampert | Jul 1981 | A |
4282872 | Franetzki et al. | Aug 1981 | A |
4286202 | Clancy et al. | Aug 1981 | A |
4290346 | Bujan | Sep 1981 | A |
4291692 | Bowman et al. | Sep 1981 | A |
4308866 | Jeliffe | Jan 1982 | A |
4312341 | Zissimopoulos | Jan 1982 | A |
4319568 | Tregoning | Mar 1982 | A |
4322201 | Archibald | Mar 1982 | A |
4323849 | Smith | Apr 1982 | A |
4333045 | Oltendorf | Jun 1982 | A |
4344429 | Gupton et al. | Aug 1982 | A |
4346707 | Whitney et al. | Aug 1982 | A |
4360019 | Portner et al. | Nov 1982 | A |
4366384 | Jensen | Dec 1982 | A |
4367736 | Gupton | Jan 1983 | A |
4370983 | Lichtenstein et al. | Feb 1983 | A |
4373527 | Fischell | Feb 1983 | A |
4381005 | Bujan | Apr 1983 | A |
4384578 | Winkler | May 1983 | A |
4385247 | Satomi | May 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4394862 | Shim | Jul 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4407659 | Adam | Oct 1983 | A |
4411651 | Schulman | Oct 1983 | A |
4418565 | St. John | Dec 1983 | A |
4444546 | Pazemenas | Apr 1984 | A |
4447191 | Bilstad et al. | May 1984 | A |
4457751 | Rodler | Jul 1984 | A |
4463301 | Moriguchi et al. | Jul 1984 | A |
4464170 | Clemens | Aug 1984 | A |
4468222 | Lundquist | Aug 1984 | A |
4468601 | Chamran et al. | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4475666 | Bilbrey et al. | Oct 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4477756 | Moriguchi | Oct 1984 | A |
4479760 | Bilstad et al. | Oct 1984 | A |
4480218 | Hair | Oct 1984 | A |
4487601 | Lindemann | Dec 1984 | A |
4492909 | Hartwig | Jan 1985 | A |
4496346 | Mosteller | Jan 1985 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4501531 | Bilstad et al. | Feb 1985 | A |
4510266 | Eertink | Apr 1985 | A |
4515584 | Abe et al. | May 1985 | A |
4519792 | Dawe | May 1985 | A |
4525163 | Slavik et al. | Jun 1985 | A |
4526568 | Clemens et al. | Jul 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4553958 | LeCocq | Nov 1985 | A |
4559036 | Wunsch | Dec 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4559454 | Kramer | Dec 1985 | A |
4565500 | Jeensalaute et al. | Jan 1986 | A |
4583981 | Urquhart et al. | Apr 1986 | A |
4587473 | Turvey | May 1986 | A |
4607520 | Dam | Aug 1986 | A |
4624661 | Arimond | Nov 1986 | A |
4627835 | Fenton, Jr. | Dec 1986 | A |
4633878 | Bombardieri | Jan 1987 | A |
4634426 | Kamen | Jan 1987 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4636144 | Abe et al. | Jan 1987 | A |
4648869 | Bobo, Jr. | Mar 1987 | A |
4652260 | Fenton, Jr. et al. | Mar 1987 | A |
4658244 | Meijer | Apr 1987 | A |
4668945 | Aldrovandi et al. | May 1987 | A |
4673334 | Allington et al. | Jun 1987 | A |
4673389 | Archibald et al. | Jun 1987 | A |
4676776 | Howson et al. | Jun 1987 | A |
4677359 | Enami et al. | Jun 1987 | A |
4678979 | Hori | Jul 1987 | A |
4678998 | Muramatsu | Jul 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4683428 | Gete | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4690673 | Bloomquist | Sep 1987 | A |
4691153 | Nishimura | Sep 1987 | A |
4696671 | Epstein et al. | Sep 1987 | A |
4697129 | Enami et al. | Sep 1987 | A |
4705506 | Archibald et al. | Nov 1987 | A |
4710106 | Iwata et al. | Dec 1987 | A |
4714462 | DiDomenico | Dec 1987 | A |
4714463 | Archibald et al. | Dec 1987 | A |
4718576 | Tamura et al. | Jan 1988 | A |
4722734 | Kolin | Feb 1988 | A |
4731051 | Fischell | Mar 1988 | A |
4731057 | Tanaka et al. | Mar 1988 | A |
4737711 | O'Hare | Apr 1988 | A |
4739346 | Buckley | Apr 1988 | A |
4741732 | Crankshaw et al. | May 1988 | A |
4751445 | Sakai | Jun 1988 | A |
4756706 | Kerns et al. | Jul 1988 | A |
4764166 | Spani et al. | Aug 1988 | A |
4764697 | Christiaens | Aug 1988 | A |
4776842 | Franetzki et al. | Oct 1988 | A |
4784576 | Bloom et al. | Nov 1988 | A |
4785184 | Bien et al. | Nov 1988 | A |
4785799 | Schoon et al. | Nov 1988 | A |
4785969 | McLaughlin | Nov 1988 | A |
4797655 | Orndal et al. | Jan 1989 | A |
4803389 | Ogawa et al. | Feb 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4818186 | Pastrone et al. | Apr 1989 | A |
4821558 | Pastrone et al. | Apr 1989 | A |
4828545 | Epstein et al. | May 1989 | A |
4829448 | Balding et al. | May 1989 | A |
4838856 | Mulreany et al. | Jun 1989 | A |
4838857 | Strowe et al. | Jun 1989 | A |
4840542 | Abbott | Jun 1989 | A |
4842584 | Pastrone et al. | Jun 1989 | A |
4845487 | Frantz et al. | Jul 1989 | A |
4851755 | Fincher | Jul 1989 | A |
4854324 | Hirschman et al. | Aug 1989 | A |
4857050 | Lentz et al. | Aug 1989 | A |
4858154 | Anderson et al. | Aug 1989 | A |
4865584 | Epstein et al. | Sep 1989 | A |
4874359 | White et al. | Oct 1989 | A |
4882575 | Kawahara | Nov 1989 | A |
4884013 | Jackson et al. | Nov 1989 | A |
4884065 | Crouse et al. | Nov 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
4906103 | Kao | Mar 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4910475 | Lin | Mar 1990 | A |
4919596 | Slate et al. | Apr 1990 | A |
4927411 | Laenen et al. | May 1990 | A |
4938079 | Goldberg | Jul 1990 | A |
4943279 | Samiotes et al. | Jul 1990 | A |
4946439 | Eggers | Aug 1990 | A |
4950235 | Slate et al. | Aug 1990 | A |
4966579 | Polaschegg | Oct 1990 | A |
4968941 | Rogers | Nov 1990 | A |
4976687 | Martin | Dec 1990 | A |
4978335 | Arthur, III | Dec 1990 | A |
4979940 | Lapp et al. | Dec 1990 | A |
4981467 | Bobo et al. | Jan 1991 | A |
5000663 | Gorton | Mar 1991 | A |
5000739 | Kulisz et al. | Mar 1991 | A |
5010473 | Jacobs | Apr 1991 | A |
5018945 | D'Silva | May 1991 | A |
5026348 | Venegas | Jun 1991 | A |
5028857 | Taghezout | Jul 1991 | A |
5032112 | Fairchild et al. | Jul 1991 | A |
5034004 | Crankshaw | Jul 1991 | A |
5041086 | Koenig et al. | Aug 1991 | A |
5043706 | Oliver | Aug 1991 | A |
5053747 | Slate et al. | Oct 1991 | A |
5055761 | Mills | Oct 1991 | A |
5058161 | Weiss | Oct 1991 | A |
5059171 | Bridge | Oct 1991 | A |
5064412 | Henke et al. | Nov 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5084663 | Olsson | Jan 1992 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5088981 | Howson et al. | Feb 1992 | A |
5097505 | Weiss | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5102392 | Sakai et al. | Apr 1992 | A |
5104374 | Bishko et al. | Apr 1992 | A |
5108367 | Epstein et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5116203 | Nartwick et al. | May 1992 | A |
5123275 | Daoud et al. | Jun 1992 | A |
5124627 | Okada | Jun 1992 | A |
5125499 | Saathoff et al. | Jun 1992 | A |
5131816 | Brown | Jul 1992 | A |
5132603 | Yoshimoto | Jul 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5161222 | Montejo et al. | Nov 1992 | A |
5176631 | Koenig | Jan 1993 | A |
5176646 | Kuroda | Jan 1993 | A |
5179340 | Rogers | Jan 1993 | A |
5180287 | Natwick et al. | Jan 1993 | A |
5181910 | Scanlon | Jan 1993 | A |
5188603 | Vaillancourt | Feb 1993 | A |
5190522 | Wocicki et al. | Mar 1993 | A |
5194796 | Domeki et al. | Mar 1993 | A |
5198776 | Carr | Mar 1993 | A |
5205819 | Ross et al. | Apr 1993 | A |
5206522 | Danby et al. | Apr 1993 | A |
5211626 | Frank et al. | May 1993 | A |
5213573 | Sorich et al. | May 1993 | A |
5216597 | Beckers | Jun 1993 | A |
5219099 | Spence et al. | Jun 1993 | A |
5219327 | Okada | Jun 1993 | A |
5221268 | Barton et al. | Jun 1993 | A |
5229713 | Bullock et al. | Jul 1993 | A |
5237309 | Frantz et al. | Aug 1993 | A |
5243982 | Möstl et al. | Sep 1993 | A |
5244463 | Cordner, Jr. et al. | Sep 1993 | A |
5256156 | Kern et al. | Oct 1993 | A |
5256157 | Samiotes et al. | Oct 1993 | A |
5260665 | Goldberg | Nov 1993 | A |
5257206 | Hanson | Dec 1993 | A |
5274316 | Evans et al. | Dec 1993 | A |
5283510 | Tamaki et al. | Feb 1994 | A |
5292306 | Wynkoop et al. | Mar 1994 | A |
5295967 | Rondelet et al. | Mar 1994 | A |
5298021 | Sherer | Mar 1994 | A |
5304126 | Epstein et al. | Apr 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5336051 | Tamari | Aug 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5342298 | Michaels | Aug 1994 | A |
5343734 | Maeda et al. | Sep 1994 | A |
5356378 | Doan | Oct 1994 | A |
5359271 | Husher | Oct 1994 | A |
5364346 | Schrezenmeir | Nov 1994 | A |
5366346 | Danby | Nov 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5374865 | Yoshimura et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5378231 | Johnson et al. | Jan 1995 | A |
5389071 | Kawahara et al. | Feb 1995 | A |
5389078 | Zalesky et al. | Feb 1995 | A |
5394732 | Johnson et al. | Mar 1995 | A |
5399171 | Bowman et al. | Mar 1995 | A |
5408326 | Priestley | Apr 1995 | A |
5415528 | Ogden et al. | May 1995 | A |
5417222 | Dempsey et al. | May 1995 | A |
5418443 | Kikuchi | May 1995 | A |
5423748 | Uhala | Jun 1995 | A |
5423759 | Campbell | Jun 1995 | A |
5428284 | Kaneda et al. | Jun 1995 | A |
5429485 | Dodge | Jul 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431627 | Pastrone et al. | Jul 1995 | A |
5434508 | Ishida | Jul 1995 | A |
5437624 | Langley et al. | Aug 1995 | A |
5444316 | Ohya et al. | Aug 1995 | A |
5444378 | Rogers | Aug 1995 | A |
5445621 | Poli et al. | Aug 1995 | A |
5451881 | Finger | Sep 1995 | A |
5455423 | Mount et al. | Oct 1995 | A |
5455851 | Chaco et al. | Oct 1995 | A |
5464392 | Epstein et al. | Nov 1995 | A |
5465082 | Chaco | Nov 1995 | A |
5469851 | Lipschutz | Nov 1995 | A |
5480294 | Di Perna et al. | Jan 1996 | A |
5485408 | Blomquist | Jan 1996 | A |
5486286 | Peterson et al. | Jan 1996 | A |
5496273 | Pastrone et al. | Mar 1996 | A |
5505696 | Miki | Apr 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5520637 | Pager et al. | May 1996 | A |
5522798 | Johnson et al. | Jun 1996 | A |
5527630 | Nagata | Jun 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5537853 | Finburgh et al. | Jul 1996 | A |
5542040 | Chang et al. | Jul 1996 | A |
5545140 | Conero et al. | Aug 1996 | A |
5547470 | Johnson et al. | Aug 1996 | A |
5554115 | Thomas et al. | Sep 1996 | A |
5562615 | Nassif | Oct 1996 | A |
5563486 | Yamamoto et al. | Oct 1996 | A |
5572105 | Nojima et al. | Nov 1996 | A |
5584667 | Davis | Dec 1996 | A |
5586868 | Lawless et al. | Dec 1996 | A |
5590653 | Aida et al. | Jan 1997 | A |
5594786 | Chaco et al. | Jan 1997 | A |
5601420 | Warner et al. | Feb 1997 | A |
5616124 | Hague et al. | Apr 1997 | A |
5620312 | Hyman et al. | Apr 1997 | A |
5620608 | Rosa et al. | Apr 1997 | A |
5626140 | Feldman et al. | May 1997 | A |
5626563 | Dodge et al. | May 1997 | A |
5627443 | Kimura et al. | May 1997 | A |
5628731 | Dodge et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5634896 | Bryant et al. | Jun 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5640075 | Brasseur et al. | Jun 1997 | A |
5640150 | Atwater | Jun 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5648710 | Ikeda | Jul 1997 | A |
5658133 | Anderson et al. | Aug 1997 | A |
5658250 | Blomquist et al. | Aug 1997 | A |
5659234 | Cresens | Aug 1997 | A |
5662612 | Niehoff | Sep 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5669877 | Blomquist | Sep 1997 | A |
5672154 | Sillén et al. | Sep 1997 | A |
5681285 | Ford et al. | Oct 1997 | A |
5681286 | Niehoff | Oct 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5689229 | Chaco et al. | Nov 1997 | A |
5691613 | Gutwillinger | Nov 1997 | A |
5695464 | Viallet | Dec 1997 | A |
5695473 | Olsen | Dec 1997 | A |
5697899 | Hillman et al. | Dec 1997 | A |
5712795 | Layman et al. | Jan 1998 | A |
5713856 | Eggers et al. | Feb 1998 | A |
5718562 | Lawless et al. | Feb 1998 | A |
5718569 | Holst | Feb 1998 | A |
5720721 | Dumas et al. | Feb 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5738659 | Neer et al. | Apr 1998 | A |
5744027 | Connell et al. | Apr 1998 | A |
5744929 | Miyazaki | Apr 1998 | A |
5752813 | Tyner et al. | May 1998 | A |
5755691 | Hilborne | May 1998 | A |
5761072 | Bardsley, Jr. et al. | Jun 1998 | A |
5764034 | Bowman et al. | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5778256 | Darbee | Jul 1998 | A |
5781442 | Engleson et al. | Jul 1998 | A |
5782805 | Meinzer et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5789923 | Shimoyama et al. | Aug 1998 | A |
5793211 | Shimoyama et al. | Aug 1998 | A |
5795327 | Wilson et al. | Aug 1998 | A |
5798934 | Saigo et al. | Aug 1998 | A |
5800387 | Duffy et al. | Sep 1998 | A |
5807322 | Lindsey et al. | Sep 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5813972 | Nazarian et al. | Sep 1998 | A |
5814004 | Tamari | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5816779 | Lawless et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5827179 | Lichter et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5836910 | Duffy et al. | Nov 1998 | A |
5841261 | Nojima et al. | Nov 1998 | A |
5841284 | Takahashi | Nov 1998 | A |
5843035 | Bowman | Dec 1998 | A |
5850344 | Conkright | Dec 1998 | A |
5857843 | Leason et al. | Jan 1999 | A |
5865805 | Ziemba | Feb 1999 | A |
5867821 | Ballantyne et al. | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5872453 | Shimoyama et al. | Feb 1999 | A |
5875195 | Dixon | Feb 1999 | A |
5882339 | Beiser et al. | Mar 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5889379 | Yanagi et al. | Mar 1999 | A |
5894209 | Takagi et al. | Apr 1999 | A |
5897493 | Brown | Apr 1999 | A |
5897498 | Canfield, II et al. | Apr 1999 | A |
5898292 | Takemoto et al. | Apr 1999 | A |
5901150 | Jhuboo et al. | May 1999 | A |
5910252 | Truitt et al. | Jun 1999 | A |
5915240 | Karpf | Jun 1999 | A |
5920263 | Huttenhoff et al. | Jul 1999 | A |
5923159 | Ezell | Jul 1999 | A |
5924074 | Evans | Jul 1999 | A |
5932987 | McLoughlin | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5941846 | Duffy et al. | Aug 1999 | A |
5954527 | Jhuboo et al. | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957885 | Bollish et al. | Sep 1999 | A |
5971594 | Sahai et al. | Oct 1999 | A |
5975081 | Hood et al. | Nov 1999 | A |
5989222 | Cole et al. | Nov 1999 | A |
5991525 | Shah et al. | Nov 1999 | A |
5993393 | Ryan et al. | Nov 1999 | A |
5994876 | Canny et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
6000828 | Leet | Dec 1999 | A |
6003006 | Colella et al. | Dec 1999 | A |
6012034 | Hamparian et al. | Jan 2000 | A |
6017318 | Gauthier et al. | Jan 2000 | A |
6021392 | Lester et al. | Feb 2000 | A |
6023977 | Langdon et al. | Feb 2000 | A |
6024539 | Blomquist | Feb 2000 | A |
6032676 | Moore | Mar 2000 | A |
6068612 | Bowman | May 2000 | A |
6073106 | Rozen et al. | Jun 2000 | A |
6077246 | Kullas et al. | Jun 2000 | A |
6104295 | Gaisser et al. | Aug 2000 | A |
RE36871 | Epstein et al. | Sep 2000 | E |
6122536 | Sun et al. | Sep 2000 | A |
6142008 | Cole et al. | Nov 2000 | A |
6150942 | O'Brien | Nov 2000 | A |
6157914 | Seto et al. | Dec 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6182667 | Hanks et al. | Feb 2001 | B1 |
6186141 | Pike et al. | Feb 2001 | B1 |
6189105 | Lopes | Feb 2001 | B1 |
6195589 | Ketcham | Feb 2001 | B1 |
6208107 | Maske et al. | Mar 2001 | B1 |
6212936 | Meisberger | Apr 2001 | B1 |
6231320 | Lawless et al. | May 2001 | B1 |
6234176 | Domae et al. | May 2001 | B1 |
6241704 | Peterson et al. | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6259355 | Chaco et al. | Jul 2001 | B1 |
6267725 | Dubberstein et al. | Jul 2001 | B1 |
6269340 | Ford et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6271813 | Palalau | Aug 2001 | B1 |
6277072 | Bardy | Aug 2001 | B1 |
6280380 | Bardy | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6285155 | Maske et al. | Sep 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6347553 | Morris et al. | Feb 2002 | B1 |
6396583 | Clare | May 2002 | B1 |
6408679 | Kline-Schoder et al. | Jun 2002 | B1 |
6418334 | Unger et al. | Jul 2002 | B1 |
6463785 | Kline-Schoder et al. | Oct 2002 | B1 |
6467331 | Kline-Schoder et al. | Oct 2002 | B1 |
6468242 | Wilson et al. | Oct 2002 | B1 |
6475178 | Krajewski | Nov 2002 | B1 |
6482158 | Mault | Nov 2002 | B2 |
6485263 | Bryant et al. | Nov 2002 | B1 |
6485418 | Yasushi et al. | Nov 2002 | B2 |
6494831 | Koritzinsky | Dec 2002 | B1 |
6497680 | Holst | Dec 2002 | B1 |
6503221 | Briggs | Jan 2003 | B1 |
6516667 | Broad et al. | Feb 2003 | B1 |
6517482 | Eiden et al. | Feb 2003 | B1 |
6519569 | White et al. | Feb 2003 | B1 |
6529751 | Van Driel et al. | Mar 2003 | B1 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6544228 | Heitmeier | Apr 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6572542 | Houben et al. | Jun 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6572576 | Brugger et al. | Jun 2003 | B2 |
6581117 | Klein et al. | Jun 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6599281 | Struys et al. | Jul 2003 | B1 |
6602191 | Quy | Aug 2003 | B2 |
6605072 | Struys et al. | Aug 2003 | B2 |
6616633 | Butterfield et al. | Sep 2003 | B1 |
6622542 | Derek | Sep 2003 | B2 |
6629449 | Kline-Schoder et al. | Oct 2003 | B1 |
6640246 | Gardy, Jr. et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6652455 | Kocher | Nov 2003 | B1 |
6653937 | Nelson et al. | Nov 2003 | B2 |
6689091 | Bui et al. | Feb 2004 | B2 |
6692241 | Watanabe et al. | Feb 2004 | B2 |
6721582 | Trepagnier et al. | Apr 2004 | B2 |
6725200 | Rost | Apr 2004 | B1 |
6740072 | Starkweather et al. | May 2004 | B2 |
6749403 | Bryant et al. | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6783328 | Lucke et al. | Aug 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6807965 | Hickle | Oct 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6840113 | Fukumura | Jan 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6869425 | Briggs et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6885881 | Leonhardt | Apr 2005 | B2 |
6915170 | Engleson et al. | Jul 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6936029 | Mann et al. | Aug 2005 | B2 |
6942636 | Mendez | Sep 2005 | B2 |
6945954 | Hochman et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6973374 | Ader | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6978779 | Haveri et al. | Dec 2005 | B2 |
6979326 | Mann et al. | Dec 2005 | B2 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6986347 | Hickle | Jan 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
7006005 | Nazarian et al. | Feb 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7029456 | Ware et al. | Apr 2006 | B2 |
7060059 | Keith et al. | Jun 2006 | B2 |
7092796 | Vanderveen | Aug 2006 | B2 |
7104763 | Bouton et al. | Sep 2006 | B2 |
7108680 | Rohr et al. | Sep 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7137964 | Flaherty | Nov 2006 | B2 |
7141037 | Butterfield et al. | Nov 2006 | B2 |
7154397 | Zerhusen et al. | Dec 2006 | B2 |
7171277 | Engleson et al. | Jan 2007 | B2 |
7185288 | McKeever | Feb 2007 | B2 |
7201734 | Hickle | Apr 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7206715 | Vanderveen et al. | Apr 2007 | B2 |
7213009 | Pestotnik | May 2007 | B2 |
7220240 | Struys et al. | May 2007 | B2 |
7229430 | Hickle et al. | Jun 2007 | B2 |
7230529 | Ketcherside | Jun 2007 | B2 |
7232430 | Carlisle | Jun 2007 | B2 |
7238164 | Childers et al. | Jul 2007 | B2 |
7247154 | Hickle | Jul 2007 | B2 |
7267664 | Rizzo | Sep 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7300418 | Zaleski | Nov 2007 | B2 |
7327273 | Hung et al. | Feb 2008 | B2 |
7338470 | Katz | Mar 2008 | B2 |
7347836 | Peterson et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7356382 | Vanderveen | Apr 2008 | B2 |
7360999 | Nelson et al. | Apr 2008 | B2 |
7369948 | Ferenczi et al. | May 2008 | B1 |
7384410 | Eggers et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7402154 | Mendez | Jul 2008 | B2 |
7407489 | Mendez | Aug 2008 | B2 |
7414534 | Kroll et al. | Aug 2008 | B1 |
7447643 | Olson | Nov 2008 | B1 |
7452190 | Bouton et al. | Nov 2008 | B2 |
7454314 | Holland et al. | Nov 2008 | B2 |
7471994 | Ford et al. | Dec 2008 | B2 |
7482818 | Greenwald et al. | Jan 2009 | B2 |
7483756 | Engleson et al. | Jan 2009 | B2 |
7490021 | Holland et al. | Feb 2009 | B2 |
7491187 | Van Den Berghe et al. | Feb 2009 | B2 |
7517332 | Tonelli | Apr 2009 | B2 |
7523401 | Aldridge | Apr 2009 | B1 |
7561986 | Vanderveen et al. | Jul 2009 | B2 |
7645258 | White et al. | Jan 2010 | B2 |
7654127 | Krulevitch | Feb 2010 | B2 |
7657443 | Crass | Feb 2010 | B2 |
7678048 | Urbano et al. | Mar 2010 | B1 |
7699806 | Ware et al. | Apr 2010 | B2 |
7705727 | Pestotnik | Apr 2010 | B2 |
7766873 | Moberg et al. | Aug 2010 | B2 |
7785313 | Mastrototaro | Aug 2010 | B2 |
7786909 | Udupa et al. | Aug 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7847276 | Carlisle | Dec 2010 | B2 |
7860583 | Condurso et al. | Dec 2010 | B2 |
7871394 | Halbert et al. | Jan 2011 | B2 |
7876443 | Bernacki | Jan 2011 | B2 |
7895053 | Holland et al. | Feb 2011 | B2 |
7895882 | Carlisle | Mar 2011 | B2 |
7896834 | Smisson, III | Mar 2011 | B2 |
7896842 | Palmroos et al. | Mar 2011 | B2 |
7905710 | Wang | Mar 2011 | B2 |
7933780 | de la Huerga | Apr 2011 | B2 |
7945452 | Fathallah et al. | May 2011 | B2 |
7981073 | Mollstam | Jul 2011 | B2 |
7981082 | Wang | Jul 2011 | B2 |
8034020 | Dewey | Oct 2011 | B2 |
8038593 | Friedman et al. | Oct 2011 | B2 |
8065161 | Howard et al. | Nov 2011 | B2 |
8067760 | Carlisle | Nov 2011 | B2 |
8075546 | Carlisle et al. | Dec 2011 | B2 |
8078983 | Davis et al. | Dec 2011 | B2 |
8149131 | Blornquist | Apr 2012 | B2 |
8175668 | Nabutovsky et al. | May 2012 | B1 |
8177739 | Cartledge et al. | May 2012 | B2 |
8185322 | Schroeder et al. | May 2012 | B2 |
8219413 | Martinez et al. | Jul 2012 | B2 |
8231578 | Fathallah et al. | Jul 2012 | B2 |
8234128 | Martucci et al. | Jul 2012 | B2 |
8271106 | Wehba et al. | Sep 2012 | B2 |
8291337 | Gannin et al. | Oct 2012 | B2 |
8313308 | Lawless et al. | Nov 2012 | B2 |
8317750 | Ware et al. | Nov 2012 | B2 |
8317752 | Cozmi et al. | Nov 2012 | B2 |
8340792 | Condurso et al. | Dec 2012 | B2 |
8359338 | Butterfield et al. | Jan 2013 | B2 |
8361021 | Wang et al. | Jan 2013 | B2 |
8388598 | Steinkogler | Mar 2013 | B2 |
8398616 | Budiman | Mar 2013 | B2 |
8403908 | Jacobson et al. | Mar 2013 | B2 |
8449524 | Braig et al. | May 2013 | B2 |
8494879 | Davis et al. | Jul 2013 | B2 |
8504179 | Blomquist | Aug 2013 | B2 |
8517990 | Teel et al. | Aug 2013 | B2 |
8518021 | Stewart et al. | Aug 2013 | B2 |
8539812 | Stringham et al. | Sep 2013 | B2 |
8543416 | Palmroos et al. | Sep 2013 | B2 |
8577692 | Silkaitis et al. | Nov 2013 | B2 |
8630722 | Condurso et al. | Jan 2014 | B2 |
8666769 | Butler et al. | Mar 2014 | B2 |
8700421 | Feng et al. | Apr 2014 | B2 |
8721584 | Braithwaite et al. | May 2014 | B2 |
8761906 | Condurso et al. | Jun 2014 | B2 |
8768719 | Wehba et al. | Jul 2014 | B2 |
8771251 | Ruchti et al. | Jul 2014 | B2 |
8821432 | Unverdorben | Sep 2014 | B2 |
8964185 | Luo et al. | Feb 2015 | B1 |
9005150 | Ware et al. | Apr 2015 | B2 |
9026370 | Rubalcaba et al. | May 2015 | B2 |
9084855 | Ware et al. | Jul 2015 | B2 |
9114217 | Sur et al. | Aug 2015 | B2 |
9134735 | Lowery et al. | Sep 2015 | B2 |
9134736 | Lowery et al. | Sep 2015 | B2 |
9138526 | Ware et al. | Sep 2015 | B2 |
9240002 | Hume et al. | Jan 2016 | B2 |
9381296 | Arrizza et al. | Jul 2016 | B2 |
9393362 | Cozmi et al. | Jul 2016 | B2 |
9707341 | Dumas, III et al. | Jul 2017 | B2 |
20010016056 | Westphal et al. | Aug 2001 | A1 |
20010032099 | Joao | Oct 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20020015018 | Shimazu et al. | Feb 2002 | A1 |
20020032583 | Joao | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020045806 | Baker, Jr. et al. | Apr 2002 | A1 |
20020077852 | Ford et al. | Jun 2002 | A1 |
20020082728 | Mueller et al. | Jun 2002 | A1 |
20020087115 | Hartlaub | Jul 2002 | A1 |
20020095486 | Bahl | Jul 2002 | A1 |
20020099282 | Knobbe et al. | Jul 2002 | A1 |
20020152239 | Bautista-Lloyd et al. | Oct 2002 | A1 |
20030009244 | Engleson | Jan 2003 | A1 |
20030013959 | Grunwald et al. | Jan 2003 | A1 |
20030025602 | Medema et al. | Feb 2003 | A1 |
20030028082 | Thompson | Feb 2003 | A1 |
20030030001 | Cooper et al. | Feb 2003 | A1 |
20030050621 | Lebel et al. | Mar 2003 | A1 |
20030060688 | Ciarniello et al. | Mar 2003 | A1 |
20030060765 | Campbell et al. | Mar 2003 | A1 |
20030079746 | Hickle | May 2003 | A1 |
20030104982 | Wittmann et al. | Jun 2003 | A1 |
20030106553 | Vanderveen | Jun 2003 | A1 |
20030125662 | Bui | Jul 2003 | A1 |
20030130616 | Steil | Jul 2003 | A1 |
20030139701 | White et al. | Jul 2003 | A1 |
20030140928 | Bui et al. | Jul 2003 | A1 |
20030141981 | Bui | Jul 2003 | A1 |
20030143746 | Sage, Jr. | Jul 2003 | A1 |
20030160683 | Blomquist | Aug 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030200116 | Forrester | Oct 2003 | A1 |
20030204274 | Ullestad et al. | Oct 2003 | A1 |
20030204416 | Acharya | Oct 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030217962 | Childers et al. | Nov 2003 | A1 |
20040057226 | Berthou et al. | Mar 2004 | A1 |
20040064342 | Browne et al. | Apr 2004 | A1 |
20040077996 | Jasperson et al. | Apr 2004 | A1 |
20040120825 | Bouton | Jun 2004 | A1 |
20040147034 | Gore et al. | Jul 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167465 | Kohler | Aug 2004 | A1 |
20040167804 | Simpson | Aug 2004 | A1 |
20040172222 | Simpson et al. | Sep 2004 | A1 |
20040172283 | Vanderveen | Sep 2004 | A1 |
20040172302 | Martucci et al. | Sep 2004 | A1 |
20040181314 | Zaleski | Sep 2004 | A1 |
20040193325 | Bonderud | Sep 2004 | A1 |
20040193453 | Butterfield et al. | Sep 2004 | A1 |
20040204638 | Diab et al. | Oct 2004 | A1 |
20040204673 | Flaherty et al. | Oct 2004 | A1 |
20040220517 | Starkweather et al. | Nov 2004 | A1 |
20040247445 | Nelson | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20050021006 | Tonnies | Jan 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050055242 | Bello et al. | Mar 2005 | A1 |
20050055244 | Mullan et al. | Mar 2005 | A1 |
20050065465 | Lebel et al. | Mar 2005 | A1 |
20050075544 | Shapiro et al. | Apr 2005 | A1 |
20050096593 | Pope | May 2005 | A1 |
20050099624 | Staehr | May 2005 | A1 |
20050107923 | Vanderveen | May 2005 | A1 |
20050119914 | Batch | Jun 2005 | A1 |
20050131739 | Rabinowitz et al. | Jun 2005 | A1 |
20050137522 | Aoki | Jun 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050171815 | Vanderveen | Aug 2005 | A1 |
20050177096 | Bollish et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182355 | Bui | Aug 2005 | A1 |
20050192529 | Butterfield et al. | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050197554 | Polcha | Sep 2005 | A1 |
20050197621 | Poulsen et al. | Sep 2005 | A1 |
20050224083 | Crass | Oct 2005 | A1 |
20050235733 | Holst et al. | Oct 2005 | A1 |
20050238497 | Holst et al. | Oct 2005 | A1 |
20050240305 | Bogash et al. | Oct 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20050277890 | Stewart et al. | Dec 2005 | A1 |
20060009727 | O'Mahony et al. | Jan 2006 | A1 |
20060009734 | Martin | Jan 2006 | A1 |
20060047270 | Shelton | Mar 2006 | A1 |
20060053036 | Coffman et al. | Mar 2006 | A1 |
20060064020 | Burnes et al. | Mar 2006 | A1 |
20060064053 | Bollish et al. | Mar 2006 | A1 |
20060079831 | Gilbert | Apr 2006 | A1 |
20060100746 | Leibner-Druska | May 2006 | A1 |
20060100907 | Holland et al. | May 2006 | A1 |
20060106649 | Eggers et al. | May 2006 | A1 |
20060116639 | Russell | Jun 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060190302 | Eggers et al. | Aug 2006 | A1 |
20060195022 | Trepagnier et al. | Aug 2006 | A1 |
20060200007 | Brockway et al. | Sep 2006 | A1 |
20060211404 | Cromp et al. | Sep 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226088 | Robinson et al. | Oct 2006 | A1 |
20060226089 | Robinson et al. | Oct 2006 | A1 |
20060226090 | Robinson et al. | Oct 2006 | A1 |
20060229557 | Fathallah et al. | Oct 2006 | A1 |
20060229918 | Fotsch et al. | Oct 2006 | A1 |
20060264895 | Flanders | Nov 2006 | A1 |
20060265246 | Hoag | Nov 2006 | A1 |
20060270971 | Gelfand et al. | Nov 2006 | A1 |
20060272421 | Frinak et al. | Dec 2006 | A1 |
20060275142 | Bouton et al. | Dec 2006 | A1 |
20070015972 | Wang et al. | Jan 2007 | A1 |
20070060796 | Kim | Mar 2007 | A1 |
20070060871 | Istoc | Mar 2007 | A1 |
20070060874 | Nesbitt et al. | Mar 2007 | A1 |
20070062250 | Krulevitch | Mar 2007 | A1 |
20070065363 | Dalal et al. | Mar 2007 | A1 |
20070078314 | Grounsell | Apr 2007 | A1 |
20070084288 | Thomas et al. | Apr 2007 | A1 |
20070088333 | Levin et al. | Apr 2007 | A1 |
20070100665 | Brown | May 2007 | A1 |
20070112298 | Mueller et al. | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070142822 | Remde | Jun 2007 | A1 |
20070156452 | Batch | Jul 2007 | A1 |
20070191817 | Martin | Aug 2007 | A1 |
20070214003 | Holland et al. | Sep 2007 | A1 |
20070215545 | Bissler et al. | Sep 2007 | A1 |
20070233035 | Wehba et al. | Oct 2007 | A1 |
20070233049 | Wehba et al. | Oct 2007 | A1 |
20070257788 | Carlson | Nov 2007 | A1 |
20080009684 | Corsetti et al. | Jan 2008 | A1 |
20080033361 | Evans et al. | Feb 2008 | A1 |
20080039777 | Katz et al. | Feb 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080071210 | Moubayed et al. | Mar 2008 | A1 |
20080091466 | Butler et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080097317 | Alholm et al. | Apr 2008 | A1 |
20080098798 | Riley et al. | May 2008 | A1 |
20080119822 | Knauper | May 2008 | A1 |
20080125701 | Moberg et al. | May 2008 | A1 |
20080139907 | Rao et al. | Jun 2008 | A1 |
20080145249 | Smisson | Jun 2008 | A1 |
20080177254 | Shelton et al. | Jul 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080200870 | Palmroos et al. | Aug 2008 | A1 |
20080208484 | Butterfield et al. | Aug 2008 | A1 |
20080214919 | Harmon et al. | Sep 2008 | A1 |
20080243055 | Fathallah et al. | Oct 2008 | A1 |
20080262469 | Bristol et al. | Oct 2008 | A1 |
20080269663 | Arnold et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275384 | Mastrototaro et al. | Nov 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20090001908 | Shubinsky et al. | Jan 2009 | A1 |
20090005703 | Fasciano | Jan 2009 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090006129 | Thukral | Jan 2009 | A1 |
20090006133 | Weinert | Jan 2009 | A1 |
20090015824 | Shubinsky et al. | Jan 2009 | A1 |
20090043171 | Rule | Feb 2009 | A1 |
20090053071 | Wang | Feb 2009 | A1 |
20090054743 | Stewart | Feb 2009 | A1 |
20090054754 | McMahon et al. | Feb 2009 | A1 |
20090082676 | Bennison | Mar 2009 | A1 |
20090097029 | Tokhtuev et al. | Apr 2009 | A1 |
20090112155 | Zhao | Apr 2009 | A1 |
20090124963 | Hogard | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090143726 | Bouton et al. | Jun 2009 | A1 |
20090144025 | Bouton et al. | Jun 2009 | A1 |
20090144026 | Bouton et al. | Jun 2009 | A1 |
20090149743 | Barron et al. | Jun 2009 | A1 |
20090153058 | Feng et al. | Jun 2009 | A1 |
20090177146 | Nesbitt et al. | Jul 2009 | A1 |
20090177769 | Roberts | Jul 2009 | A1 |
20090177992 | Rubalcaba et al. | Jul 2009 | A1 |
20090178485 | Thomas et al. | Jul 2009 | A1 |
20090183147 | Davis et al. | Jul 2009 | A1 |
20090205426 | Balschat et al. | Aug 2009 | A1 |
20090209938 | Aalto-Setala | Aug 2009 | A1 |
20090212966 | Panduro | Aug 2009 | A1 |
20090221890 | Saffer et al. | Sep 2009 | A1 |
20090223294 | Thomas et al. | Sep 2009 | A1 |
20090270810 | DeBelser | Oct 2009 | A1 |
20090270833 | DeBelser | Oct 2009 | A1 |
20100022988 | Wochner | Jan 2010 | A1 |
20100280430 | Caleffi et al. | Jan 2010 | A1 |
20100036310 | Hillman | Feb 2010 | A1 |
20100056992 | Hayter | Mar 2010 | A1 |
20100079760 | Bernacki | Apr 2010 | A1 |
20100094251 | Estes et al. | Apr 2010 | A1 |
20100121170 | Rule | May 2010 | A1 |
20100121415 | Skelton et al. | May 2010 | A1 |
20100131434 | Magent et al. | May 2010 | A1 |
20100141460 | Tokhtuev et al. | Jun 2010 | A1 |
20100147081 | Thomas et al. | Jun 2010 | A1 |
20100160854 | Gauthier | Jun 2010 | A1 |
20100185142 | Kamen et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198182 | Lanigan et al. | Aug 2010 | A1 |
20100198183 | Lanigan et al. | Aug 2010 | A1 |
20100212407 | Stringham et al. | Aug 2010 | A1 |
20100212675 | Walling et al. | Aug 2010 | A1 |
20100214110 | Wang | Aug 2010 | A1 |
20100217621 | Schoenberg | Aug 2010 | A1 |
20100271479 | Heydlauf | Oct 2010 | A1 |
20100273738 | Valcke et al. | Oct 2010 | A1 |
20100295686 | Sloan et al. | Nov 2010 | A1 |
20100298765 | Budiman et al. | Nov 2010 | A1 |
20100317093 | Turewicz et al. | Dec 2010 | A1 |
20100318025 | John | Dec 2010 | A1 |
20110001605 | Kiani et al. | Jan 2011 | A1 |
20110004186 | Butterfield | Jan 2011 | A1 |
20110009797 | Kelly et al. | Jan 2011 | A1 |
20110040247 | Mandro et al. | Feb 2011 | A1 |
20110046558 | Gravesen et al. | Feb 2011 | A1 |
20110062703 | Lopez et al. | Mar 2011 | A1 |
20110064612 | Franzoni | Mar 2011 | A1 |
20110071464 | Palerm | Mar 2011 | A1 |
20110072379 | Gannon | Mar 2011 | A1 |
20110078608 | Gannon et al. | Mar 2011 | A1 |
20110099313 | Bolanowski | Apr 2011 | A1 |
20110105983 | Kelly et al. | May 2011 | A1 |
20110137241 | DelCastilio et al. | Jun 2011 | A1 |
20110175728 | Baker, Jr. | Jul 2011 | A1 |
20110190598 | Shusterman | Aug 2011 | A1 |
20110190694 | Lanier et al. | Aug 2011 | A1 |
20110264006 | Ali et al. | Oct 2011 | A1 |
20110264043 | Kotnick et al. | Oct 2011 | A1 |
20110282321 | Steil et al. | Nov 2011 | A1 |
20110320049 | Chossat et al. | Dec 2011 | A1 |
20120025995 | Moberg | Feb 2012 | A1 |
20120035535 | Johnson et al. | Feb 2012 | A1 |
20120059234 | Barrett et al. | Mar 2012 | A1 |
20120095433 | Hungerford et al. | Apr 2012 | A1 |
20120123322 | Scarpaci et al. | May 2012 | A1 |
20120143116 | Ware et al. | Jun 2012 | A1 |
20120180790 | Montgomery | Jul 2012 | A1 |
20120185267 | Kamen et al. | Jul 2012 | A1 |
20120191059 | Cummings et al. | Jul 2012 | A1 |
20120203177 | Lanier | Aug 2012 | A1 |
20120245525 | Pope et al. | Sep 2012 | A1 |
20120259278 | Hayes et al. | Oct 2012 | A1 |
20130006666 | Schneider | Jan 2013 | A1 |
20130009551 | Knapp | Jan 2013 | A1 |
20130041342 | Bernini et al. | Feb 2013 | A1 |
20130083191 | Lowery et al. | Apr 2013 | A1 |
20130085443 | Lowery et al. | Apr 2013 | A1 |
20130085689 | Sur et al. | Apr 2013 | A1 |
20130110538 | Butterfield et al. | May 2013 | A1 |
20130150766 | Olde et al. | Jun 2013 | A1 |
20130150821 | Bollish et al. | Jun 2013 | A1 |
20130158504 | Ruchti et al. | Jun 2013 | A1 |
20130201482 | Munro | Aug 2013 | A1 |
20130116649 | Kouyoumjian et al. | Sep 2013 | A1 |
20130253430 | Kouyoumjian et al. | Sep 2013 | A1 |
20130291116 | Homer | Oct 2013 | A1 |
20130296823 | Melker et al. | Nov 2013 | A1 |
20130296984 | Burnett et al. | Nov 2013 | A1 |
20130345658 | Browne et al. | Dec 2013 | A1 |
20130345666 | Panduro et al. | Dec 2013 | A1 |
20140039446 | Day | Feb 2014 | A1 |
20140224829 | Capone et al. | Aug 2014 | A1 |
20140350513 | Oruklu et al. | Nov 2014 | A1 |
20140358077 | Oruklu et al. | Dec 2014 | A1 |
20150025453 | Ledford et al. | Jan 2015 | A1 |
20150246175 | Shubinsky et al. | Sep 2015 | A1 |
20150343141 | Lindo et al. | Dec 2015 | A1 |
20160103960 | Hume et al. | Apr 2016 | A1 |
20160175517 | Sileika et al. | Jun 2016 | A1 |
20160256622 | Day et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
31 12 762 | Jan 1983 | DE |
34 35 647 | Jul 1985 | DE |
35 30 747 | Mar 1987 | DE |
38 27 444 | Feb 1990 | DE |
19734002 | Sep 1998 | DE |
19901078 | Feb 2000 | DE |
198 44 252 | Mar 2000 | DE |
199 32 147 | Jan 2001 | DE |
103 52 456 | Jul 2005 | DE |
0 291 727 | Nov 1988 | EP |
0 319 275 | Jun 1989 | EP |
0 341 582 | Nov 1989 | EP |
0 370 162 | May 1990 | EP |
0387724 | Sep 1990 | EP |
0 453 211 | Oct 1991 | EP |
0462405 | Dec 1991 | EP |
0 516 130 | Dec 1992 | EP |
0 519 765 | Dec 1992 | EP |
0 643 301 | Mar 1995 | EP |
0 683 465 | Nov 1995 | EP |
0 880 936 | Dec 1998 | EP |
0 954 090 | Nov 1999 | EP |
1 174 817 | Jan 2002 | EP |
1 197 178 | Apr 2002 | EP |
1 500 025 | Apr 2003 | EP |
1813188 | Aug 2007 | EP |
2 228 004 | Sep 2010 | EP |
2 243 506 | Oct 2010 | EP |
2 717 919 | Sep 1995 | FR |
2 121 971 | Jan 1984 | GB |
2 312 022 | Oct 1997 | GB |
2 312 046 | Oct 1997 | GB |
04-231966 | Aug 1992 | JP |
2005-021463 | Jan 2005 | JP |
2006-517423 | Jul 2006 | JP |
WO 84000690 | Mar 1984 | WO |
WO 90007942 | Jul 1990 | WO |
WO 91016087 | Oct 1991 | WO |
WO 91016416 | Oct 1991 | WO |
WO 93004284 | Mar 1993 | WO |
WO 95016200 | Jun 1995 | WO |
WO 95031233 | Nov 1995 | WO |
WO 96008755 | Mar 1996 | WO |
WO 96025186 | Aug 1996 | WO |
WO 96041156 | Dec 1996 | WO |
9710013 | Mar 1997 | WO |
WO 98012670 | Mar 1998 | WO |
WO 98014234 | Apr 1998 | WO |
WO 98019263 | May 1998 | WO |
WO 98044320 | Oct 1998 | WO |
WO 98056441 | Dec 1998 | WO |
WO 99015216 | Apr 1999 | WO |
WO 99051003 | Oct 1999 | WO |
WO 00013580 | Mar 2000 | WO |
WO 00041621 | Jul 2000 | WO |
WO 01014974 | Mar 2001 | WO |
WO 01033484 | May 2001 | WO |
WO 02005702 | Jan 2002 | WO |
WO 03006091 | Jan 2003 | WO |
WO 03053498 | Jul 2003 | WO |
WO 2004060455 | Jul 2004 | WO |
WO 2005050526 | Jun 2005 | WO |
WO 2005057175 | Jun 2005 | WO |
WO 2005065749 | Jul 2005 | WO |
WO 2007087443 | Aug 2007 | WO |
WO 2008063429 | May 2008 | WO |
WO 2008067245 | Jun 2008 | WO |
WO 2008088490 | Jul 2008 | WO |
WO 2008134146 | Nov 2008 | WO |
WO 2009016504 | Feb 2009 | WO |
WO 2009023406 | Feb 2009 | WO |
WO 2009023407 | Feb 2009 | WO |
WO 2009023634 | Feb 2009 | WO |
WO 2009026420 | Feb 2009 | WO |
WO 2009049252 | Apr 2009 | WO |
2009127683 | Oct 2009 | WO |
WO 2010017279 | Feb 2010 | WO |
WO 2010075371 | Jul 2010 | WO |
WO 2010099313 | Sep 2010 | WO |
WO 2010114929 | Oct 2010 | WO |
WO 2010119409 | Oct 2010 | WO |
WO 2010124127 | Oct 2010 | WO |
WO 2010135646 | Nov 2010 | WO |
WO 2010135654 | Nov 2010 | WO |
WO 2010135670 | Nov 2010 | WO |
WO 2010135686 | Nov 2010 | WO |
WO 2010148205 | Dec 2010 | WO |
WO 2011017778 | Feb 2011 | WO |
WO 2011080188 | Jul 2011 | WO |
WO 2012042763 | Apr 2012 | WO |
WO 2013028524 | Feb 2013 | WO |
WO 2013096769 | Jun 2013 | WO |
WO 2015134478 | Sep 2015 | WO |
Entry |
---|
Tang, et al., Linear dimensionality reduction using relevance weighted LDA, Pattern Recognition, Apr. 2005, Elsevier, vol. 38, pp. 485-493. |
Tang et al., Linear dimensionally reduction using relevance weighted LDA, Pattern Recognition, 2005, pp. 485-493, 38. |
Alaedeen et al., “Total Parenteral Nutrition-Associated Hyperglycemia Correlates with Prolonged Mechanical Ventilation and Hospital Stay in Septic Infants”, Journal of Pediatric Surgery, Jan. 2006, vol. 41, No. 1, pp. 239-244. |
Allegro, “3955—Full-Bridge PWM Microstepping Motor Drive”, Datasheet, 1997, pp. 16. |
Aragon, Daleen RN, Ph.D., CCRN, “Evaluation of Nursing Work Effort and Perceptions About Blood Glucose Testing in Tight Glycemic Control”, American Journal of Critical Care, Jul. 2006, vol. 15, No. 4, pp. 370-377. |
Baxter, “Baxter Receives 510(k) Clearance for Next-Generation SIGMA Spectrum Infusion Pump with Master Drug Library” Press Release, May 8, 2014, pp. 2. http://web.archive.org/web/20160403140025/http://www.baxter.com/news-media/newsroom/press-releases/2014/05_08_14_sigma.page. |
Bequette, Ph.D., “A Critical Assessment of Algorithms and Challenges in the Development of a Closed-Loop Artificial Pancreas”, Diabetes Technology & Therapeutics, Feb. 28, 2005, vol. 7, No. 1, pp. 28-47. |
Bequette, B. Wayne, Ph.D., “Analysis of Algorithms for Intensive Care Unit Blood Glucose Control”, Journal of Diabetes Science and Technology, Nov. 2007, vol. 1, No. 6, pp. 813-824. |
Binder et al., “Insulin Infusion with Parenteral Nutrition in Extremely Low Birth Weight Infants with Hyperglycemia”, Journal of Pediatrics, Feb. 1989, vol. 114, No. 2, pp. 273-280. |
Bode et al., “Intravenous Insulin Infusion Therapy: Indications, Methods, and Transition to Subcutaneous Insulin Therapy”, Endocrine Practice, Mar./Apr. 2004, vol. 10, Supplement 2, pp. 71-80. |
Cannon, MD et al., “Automated Heparin-Delivery System to Control Activated Partial Thromboplastin Time”, Circulation, Feb. 16, 1999, vol. 99, pp. 751-756. |
“CareAware® Infusion Management”, Cerner Store, as printed May 12, 2011, pp. 3, https://store.cerner.com/items/7. |
Chen et al., “Enabling Location-Based Services on Wireless LANs”, The 11th IEEE International Conference on Networks, ICON 2003, Sep. 28-Oct. 1, 2003, pp. 567-572. |
Cheung et al., “Hyperglycemia is Associated with Adverse Outcomes in Patients Receiving Total Parenteral Nutrition”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2367-2371. |
Davidson et al., “A Computer-Directed Intravenous Insulin System Shown to be Safe, Simple, and Effective in 120,618 h of Operation”, Diabetes Care, Oct. 2005, vol. 28, No. 10, pp. 2418-2423. |
Diabetes Close Up, Close Concerns AACE Inpatient Management Conference Report, Consensus Development Conference on Inpatient Diabetes and Metabolic Control, Washington, D.C., Dec. 14-16, 2003, pp. 1-32. |
Fogt et al., Development and Evaluation of a Glucose Analyzer for a Glucose-Controlled Insulin Infusion System (Biostator®), Clinical Chemistry, 1978, vol. 24, No. 8, pp. 1366-1372. |
Goldberg et al., “Clinical Results of an Updated Insulin Infusion Protocol in Critically III Patients”, Diabetes Spectrum, 2005, vol. 18, No. 3, pp. 188-191. |
Halpern et al., “Changes in Critical Care Beds and Occupancy in the United States 1985-2000: Differences Attributable to Hospital Size”, Critical Care Medical, Aug. 2006, vol. 34, No. 8, pp. 2105-2112. |
Hospira, “Plum A+™ Infusion System” as archived Dec. 1, 2012, pp. 2. www.hospira.com/products_and_services/infusion_pumps/plum/index. |
International Search Report and Written Opinion received in PCT Application No. PCT/US2013/034041, dated Jun. 19, 2013 in 11 pages. |
Lamsdale et al., “A Usability Evaluation of an Infusion Pump by Nurses Using a Patient Simulator”, Proceedings of the Human Factors and Ergonomics Society 49th Annual Meeting, Sep. 2005, pp. 1024-1028. |
Magaji et al., “Inpatient Management of Hyperglycemia and Diabetes”, Clinical Diabetes, 2011, vol. 29, No. 1, pp. 3-9. |
Mauseth et al., “Proposed Clinical Application for Tuning Fuzzy Logic Controller of Artificial Pancreas Utilizing a Personalization Factor”, Journal of Diabetes Science and Technology, Jul. 2010, vol. 4, No. 4, pp. 913-922. |
Maynard et al., “Subcutaneous Insulin Order Sets and Protocols: Effective Design and Implementation Strategies”, Journal of Hospital Medicine, Sep./Oct. 2008, vol. 3, Issue 5, Supplement 5, pp. S29-S41. |
Moghissi, Etie, MD, FACP, FACE, “Hyperglycemia in Hospitalized Patients”, A Supplement to ACP Hospitalist, Jun. 15, 2008, pp. 32. |
Nuckols et al., “Programmable Infusion Pumps in ICUs: An Analysis of Corresponding Adverse Drug Events”, Journal of General Internal Medicine, 2007, vol. 23, Supp. 1, pp. 41-45. |
Pretty et al., “Hypoglycemia Detection in Critical Care Using Continuous Glucose Monitors: An in Silico Proof of Concept Analysis”, Journal of Diabetes Science and Technology, Jan. 2010, vol. 4, No. 1, pp. 15-24. |
Saager et al., “Computer-Guided Versus Standard Protocol for Insulin Administration in Diabetic Patients Undergoing Cardiac Surgery”, Annual Meeting of the American Society of Critical Care Anesthesiologists, Oct. 13, 2006. |
Sebald et al., “Numerical Analysis of a Comprehensive in Silico Subcutaneous Insulin Absorption Compartmental Model”, 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Sep. 2-6, 2009, pp. 3901-3904. |
SGS-Thomson Microelectronics, “L6219—Stepper Motor Drive”, Datasheet, Dec. 1996, pp. 10. |
SGS-Thomson Microelectronics, “PBL3717A—Stepper Motor Drive”, Datasheet, Apr. 1993, pp. 11. |
Simonsen, Michael Ph.D., POC Testing, New Monitoring Strategies on Fast Growth Paths in European Healthcare Arenas, Biomedical Business & Technology, Jan. 2007, vol. 30, No. 1, pp. 1-36. |
Smith, Joe, “Infusion Pump Informatics”, CatalyzeCare: Transforming Healthcare, as printed May 12, 2011, pp. 2. |
Thomas et al., “Implementation of a Tight Glycaemic Control Protocol Using a Web-Based Insulin Dose Calculator”, Anaesthesia, 2005, vol. 60, pp. 1093-1100. |
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in Critically Ill Patients”, The New England Journal of Medicine, Nov. 8, 2001, vol. 345, No. 19, pp. 1359-1367. |
Van Den Berghe, M.D., Ph.D., et al., “Intensive Insulin Therapy in the Medical ICU”, The New England Journal of Medicine, Feb. 2, 2006, vol. 354, No. 5, pp. 449-461. |
Westbrook et al., “Errors in the Administration of Intravenous Medications in Hospital and the Role of Correct Procedures and Nurse Experience”, BMJ Quality & Safety, 2011, vol. 20, pp. 1027-1034. |
Zakariah et al., “Combination of Biphasic Transmittance Waveform with Blood Procalcitonin Levels for Diagnosis of Sepsis in Acutely Ill Patients”, Critical Care Medicine, 2008, vol. 36, No. 5, pp. 1507-1512. |
Number | Date | Country | |
---|---|---|---|
20130261993 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61618129 | Mar 2012 | US |