The present disclosure relates generally to ventilation, heating and/or cooling systems, and more particularly, to an air diffuser for a ventilation, heating and/or cooling system.
Air diffusers may be utilized to distribute air from a duct into an interior space such as a room, office, and/or other space of a building. Typically, air diffusers are mounted to a ceiling, wall, and/or floor of the interior space. Additionally, air diffusers may be coupled to an outlet of the duct that is configured to transfer conditioned air from an air handler or ventilation air from a dedicated outdoor air system (DOAS) to the interior space. Unfortunately, air diffusers do not provide significant dispersion of conditioned air when the conditioned air flowing through the duct is at a relatively low flow, and/or volume.
The present disclosure relates to an air diffuser that includes a mounting plate having an opening in a center portion of the mounting plate, where the opening is configured to be coupled to ductwork, a low flow adapter coupled to the mounting plate and disposed over the opening, where the low flow adapter includes extruded nozzles configured to increase a velocity and induction of air flow directed toward an interior space, and where the extruded nozzles are disposed at an angle with respect to a horizontal plane defined by the center portion of the mounting plate, and a diffusion plate coupled to the mounting plate, such that the low flow adapter is positioned between the mounting plate and the diffusion plate.
The present disclosure also relates to a system that includes an air handler configured to place air in a heat exchange relationship with a refrigerant, ductwork coupled to the air handler and configured to direct the air from the air handler to one or more interior spaces, and an air diffuser coupled to the ductwork. The air diffuser includes a mounting plate having an opening in a center portion of the mounting plate, a low flow adapter coupled to the mounting plate and disposed over the opening, where the low flow adapter comprises extruded nozzles configured to increase a velocity of air flow directed toward the one or more interior spaces, and where the extruded nozzles are disposed at an angle with respect to a horizontal plane defined by the center portion of the mounting plate.
The present disclosure further relates to a low flow adapter for an air diffuser that includes edges configured to be coupled to a mounting plate of the air diffuser, such that the low flow adapter is disposed over an opening of the air diffuser, sloped faces extending from the edges, where the sloped faces include extruded nozzles configured to increase a velocity of air flow directed toward an interior space, and where the extruded nozzles are disposed at an angle with respect to a horizontal plane defined by the mounting plate, and a base plate coupled to the sloped faces and configured to form a chamber, such that all or a portion of the air flow is directed through the extruded nozzles.
Embodiments of the present disclosure are directed towards an enhanced air diffuser that is configured to provide increased dispersion of conditioned air into an interior space even when the conditioned air is supplied at low flow rates, and/or low volumes. Specifically, a low flow adapter may be included in an air diffuser to enhance an amount of diffusion of the conditioned air into the interior space. For example, the low flow adapter may include a plurality of extruded nozzles that increase a velocity of the conditioned air flowing from ductwork into the interior space (e.g., an environment to be heated and/or cooled by the conditioned air or ventilated by a dedicated outdoor air system (DOAS)). The increased velocity of the conditioned air may enhance diffusion of the conditioned air even when the conditioned air is flowing through the ductwork at relatively low flow rates, and/or low volumes. Further, the extruded nozzles may be angled toward an opening in the air diffuser to reduce obstructions to the flow of conditioned air caused by the ductwork and/or other components of the air diffuser. Embodiments of the present disclosure provide increased dispersion of heating and/or cooling and/or ventilation to the interior space when conditioned air flowing through the ductwork is at a relatively low flow rate, and/or low volume. Increased dispersion may be accomplished by an increase in velocity due to formation of vena contracta (e.g., the reduction in area of the air jet just beyond the nozzle outlets which results in an increase of jet velocity). The increased velocity creates an increased length of air pattern throw.
Turning now to the drawings,
The chiller 30, which may include heat exchangers for both evaporating and condensing a refrigerant, may cool water (e.g., refrigerant) that is circulated to the air handlers or DOAS 34. Air blown over additional coils that receive the water in the air handlers or DOAS 34 may cause the water to increase in temperature and the circulated air to decrease in temperature. The conditioned air is then routed to various locations (e.g., interior spaces) in the building 28 via additional ductwork. Ultimately, distribution of the conditioned air is routed to the air diffusers that deliver the conditioned air to offices, apartments, hallways, and any other interior spaces within the building 28. In many applications, thermostats or other command devices (not shown in
Each air diffuser 60 may be configured to disperse conditioned air or ventilation into a respective interior space 74, thereby providing heating, cooling, and/or ventilation to the interior space 74. However, in some cases, a flow rate and/or volume of the conditioned air or ventilation flowing from the one or more air handlers or DOAS 34 (and thus the primary duct 62) may fluctuate. For example, a flow rate and/or volume of the conditioned air or ventilation from the one or more air handlers or DOAS 34 may be relatively low. Dispersion of the conditioned air or ventilation into the interior spaces 74 may decrease as the flow rate of the conditioned air or ventilation through typical air diffusers decreases. In some cases, typical air diffusers may not distribute the desired amount of heating and/or cooling and/or ventilation to the interior space 74 (e.g., an amount of heating and/or cooling to reach a set point of a thermostat or an amount of ventilation to satisfy CO2 sensor) when the flow rate and/or volume of the conditioned air or ventilation falls below a threshold (e.g., below 50 cubic feet per minute (cfm), below 40 cfm, below 30 cfm, or below 25 cfm). Accordingly, embodiments of the air diffusers 60 disclosed herein may increase dispersion of the conditioned air or ventilation into the interior space 74 even at flow rates and/or volumes of the conditioned air below the threshold. Thus, interior spaces 74 of the building 28 may be heated and/or cooled to a desired temperature (e.g., set point determined by the thermostat) or ventilated to maintain desired CO2 levels as read by a CO2 meter even at low flow rates and/or volumes of the conditioned air.
For example,
In some embodiments, the mounting plate 90 may include recessed walls 100 (e.g., angled walls) that extend outward from edges 102 of the mounting plate 90. In some embodiments, the edges 102 may include a lip 103 (see e.g.,
In some embodiments, the recessed walls 100 may be tapered along edges 105 formed at corners 106 of the mounting plate 90. Tapering the recessed walls 100 of the mounting plate 90 may facilitate diffusion of the conditioned air as it flows from the low flow adapter 92 toward the interior space 74. For example, tapering the recessed walls 100 may reduce a resistance to the flow of the conditioned air caused by the recessed walls 100. Accordingly, the recessed walls 100 of the mounting plate 90 may enhance an efficiency of the air diffuser 60 by facilitating flow of the conditioned air into the interior space 74. In some embodiments, the mounting plate 90 may include a metallic material, such as steel and/or aluminum. In other embodiments, the mounting plate 90 may include another suitable material, such as a ferrous metal or plastic (e.g., a polymeric material).
The low flow adapter 92 may be coupled to the mounting plate 90 such that the low flow adapter 92 substantially covers the opening 96, thereby directing all or a portion of the conditioned air that flows from the respective secondary duct 68 through the low flow adapter 92. For example, in some embodiments, the low flow adapter 92 may be coupled to the mounting plate 90 by a plurality of fasteners 107. The fasteners 107 may extend through an outer edge 108 of the low flow adapter 92 and into the mounting plate 90. In some embodiments, the fasteners 107 may be secured to the mounting plate 90 by nuts and/or other securement devices (e.g., threaded openings in the mounting plate 90). When secured to the mounting plate 90, the outer edge 108 of the low flow adapter 92 may contact the center portion 104 of the mounting plate 90. In some embodiments, the outer edge 108 may be positioned substantially flush with the center portion 104 of the mounting plate 90.
As shown in the illustrated embodiment of
The sloped faces 112 may be coupled to both the outer edge 108 and the base plate 116, such that the low flow adapter 92 is substantially trapezoidal. However, in other embodiments, the low flow adapter 92 may include another suitable shape. As shown in the illustrated embodiment of
In some embodiments, the low flow adapter 92 may be formed from a single piece of sheet material (e.g., steel sheet metal, aluminum sheet metal, and/or plastic). For example, the outer edge 108, the sloped faces 112, and/or the base plate 116 of the low flow adapter 92 may be formed by manipulating (e.g., bending) a single piece of sheet metal into a desired shape. In other embodiments, the low flow adapter 92 may be formed from an injection mold, and thus include a plastic material (e.g., a polymeric material). In still further embodiments, the low flow adapter 92 may be formed from multiple pieces of sheet metal (e.g., steel and/or aluminum) and/or other materials (e.g., polymeric materials). In any case, the extruded nozzles 110 may be formed in the sloped faces 112 of the low flow adapter 92 by a die (e.g., an angled die and/or a conical die) that extends through the sloped faces 112 of the low flow adapter 92. As shown in the illustrated embodiment of
The diffusion plate 94 may be positioned below the low flow adapter 92 with respect to the ceiling 122 of the interior space 74, such that the low flow adapter 92 is positioned between the mounting plate 90 and the diffusion plate 94. In some embodiments, the diffusion plate 94 may be coupled to the mounting plate 90 using brackets 124 that extend into slots 126 of the mounting plate 90. The brackets 124 may be welded onto the diffusion plate 94 and/or otherwise secured to the diffusion plate 94. In other embodiments, the diffusion plate 94 may be secured to the mounting plate 90 using another suitable fastener (e.g., threaded bolts, screws, etc.). In still further embodiments, the diffusion plate 94 may be coupled to the low flow adapter 92 (e.g., via the base plate 116 and/or the outer edge 108). The diffusion plate 94 may include the same material as the mounting plate 90 and/or the low flow adapter 92. For example, the diffusion plate 94 may include steel, aluminum, and/or another suitable material (e.g., a polymeric material). In other embodiments, the diffusion plate 94 may include a material different from the mounting plate 90 and/or the low flow adapter 92.
In any case, the diffusion plate 94 may direct the flow of conditioned air toward the edges 102 of the mounting plate 90. By directing the flow of conditioned air toward the edges 102, the diffusion plate 94 may cause the conditioned air to adhere to the ceiling plane to engage in horizontal air flow, which may result in enhanced throw of the conditioned air into the interior space 74. Additionally or alternatively, the diffusion plate 94 may increase a radius of the flow of conditioned air into the interior space 74 than would otherwise occur without the diffusion plate 94. For example, without the diffusion plate 94, the flow of conditioned air may be directed immediately downward from the opening 96 and/or the low flow adapter 92 at a radius that is substantially the same size as the opening 96 and/or the low flow adapter 92. Accordingly, including the diffusion plate 94 spreads the flow of conditioned air, such that heating, cooling and/or ventilating the interior space 74 is performed with increased efficiency.
In the illustrated embodiment of
In any case, the conditioned air may be directed into a second chamber 182 formed between the mounting plate 90, the low flow adapter 92, and the diffusion plate 94. The conditioned air may be directed from the extruded nozzles toward the recessed walls 100 and/or the diffusion plate 94. In some embodiments, the recessed walls 100 include a contoured surface 184 that may facilitate the flow of the conditioned air in addition to the tapered portions 150. For example, the contoured surface 184 may include a curvature 186 that decreases a resistance caused by the recessed walls 100 on the flow of conditioned air, thereby increasing a flow of the conditioned air into the interior space 74.
The conditioned air may flow out of the second chamber 182 and into the interior space 74 through an opening 186 between the mounting plate 90 and the diffusion plate 94. In some embodiments, the diffusion plate 94 may be coupled to the mounting plate 90 so that the diffusion plate 94 extends beyond the mounting plate 90 by a distance 188. Accordingly, the opening 186 may direct the flow of conditioned air into the interior space 74 at an increased radius as the diffusion plate 94 and the recessed walls 100 enable the flow of air to disperse and spread out into the interior space 74. In other embodiments, the diffusion plate 94 may be coupled to the mounting plate 90 so that the diffusion plate 94 is flush with the edges 102 of the mounting plate 90. In still further embodiments, the diffusion plate may extend into the mounting plate 90. Additionally, the lip 103 may block the flow of conditioned air from flowing around the mounting plate 90 into the ceiling and/or away from the interior space 74.
As shown in the illustrated embodiment of
As discussed above, the extruded nozzles 110 may be formed in the sloped faces 112 using a die. For example, a die may pierce through the sloped faces 112 to create the extruded nozzles 110 (and the opening 212). As shown in the illustrated embodiment of
While only certain features and embodiments have been illustrated and described, many modifications and changes may occur to those skilled in the art (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters (e.g., temperatures, pressures, etc.), mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited in the claims. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention. Furthermore, in an effort to provide a concise description of the exemplary embodiments, all features of an actual implementation may not have been described (i.e., those unrelated to the presently contemplated best mode of carrying out the invention, or those unrelated to enabling the claimed invention). It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure, without undue experimentation.