The invention relates to air displacement pipettes, and particularly to air displacement pipettes with an enhanced blowout stroke capable of more fully discharging adhering liquid than traditional air displacement pipettes.
Handheld pipettes are commonly used to dispense or transfer small but accurately measured quantities of liquids.
U.S. Pat. No. 5,700,959, for example, describes a commercially available single channel air displacement manual pipette. Such pipettes generally include an elongated hand-holdable pipette body housing an upwardly spring biased plunger unit. The plunger unit is supported for axial movement in the pipette body between a first or upper stop position in which an end portion of the plunger unit extends from an upper end of the pipette body. A pipette user grips the pipette body with his or her thumb over the exposed end of the plunger unit. Downward thumb action on the plunger unit moves the plunger unit downward from its upper stop position against the upward bias of a return spring toward a home position, and on against the return spring and a second spring to a second or a lower stop position at which the measured fluid is expelled from a disposable tip secured to the pipette.
In the commercially available pipettes, as described in the foregoing patent, the home position is defined by a “soft” stop. The soft stop comprises a second relatively stiff spring mechanism, often referred to as a “blowout” spring, within the pipette body which is installed in a somewhat preloaded state, but further activated when the plunger unit reaches the home position. As the pipette user manually moves the plunger unit from its upper stop position by pressing downwardly with his or her thumb on the exposed end of the plunger unit, the pipette user can “feel” an increased resistance to movement of the plunger unit associated with an activation of the second spring assembly opposing further downward movement of the plunger unit. The position of the plunger unit where the user feels the activation of the second spring mechanism defines the home position for the plunger unit. Continued movement of the plunger unit beyond the home position to the lower stop position is resisted by a combination of the return spring and the second spring mechanism. The volume of the pipette is defined by the distance between the upper stop and the soft “home position” stop, and accordingly, the tactile feel of the home position—the transition between the two spring resistances—is an important characteristic of a manual pipette.
Air displacement pipettes are the most common variety of handheld pipettes. In an air displacement pipette, a controllable piston is mounted for movement axially within a chamber in the pipette; the piston moves in response to either manual control (as described above) or motorized electronic control. Typically, the piston moves in a chamber in the liquid end, or shaft, of the pipette, to which disposable pipette tips may be mounted.
An air tight seal is formed between the piston and the shaft. With such a seal in place, axial movement of the piston will vary the size of the airspace within the shaft. Moving the piston downward, into the shaft, will reduce the airspace and force air out of the shaft through an open distal end. Moving the piston upward, out of the shaft, will increase the airspace and cause air to be drawn into the shaft through the open end. The seal between the piston and the shaft is generally formed with a compressed O-ring, a skirted seal, a lip seal, or a similar structure, fabricated from a material that provides satisfactory long-term performance. For example, a piston seal structure may be made from polyethylene combined with PTFE, which has been found to offer good sealing performance and wear resistance and reliability over a period of months to years. Other configurations are possible, including various dry or lubricated seals.
A disposable pipette tip is then sealed to a nozzle at the open distal end of the shaft. Then, as the piston is moved within the shaft, air—or a measured quantity of liquid equal in volume to the displaced air—is drawn into or forced out of the tip. With both the piston and the tip sealed to the shaft, the only entry and exit path should be the distal open end of the disposable pipette tip. Because of the sealed system, air displacement pipette may be used to make accurate and precise measurements, and to move carefully calibrated quantities of liquids.
In pipetting liquids with traditional manual air displacement pipettes, the pipette user grasps the pipette housing with his or her thumb on top of the exposed end of the plunger unit. Exerting downward thumb pressure on the plunger unit, the user moves the plunger unit away from the upper stop position against the force of the return spring. The user detects the home position for the plunger unit during movement of the plunger unit away from the first stop position by sensing the start of an increase in the downward force required to move the plunger unit. Such increase force is the result of movement of the plunger unit against the return spring and the preloaded second spring mechanism, commonly referred to as a “blowout” spring mechanism. Then, with the tip inserted in the liquid, the user manually controls the rate of return of the plunger unit from the home position to the upper stop position.
Subsequently, to dispense the liquid, the user removes the tip from the liquid and maneuvers it to a position above a receptacle, then depresses the plunger unit gradually to the soft stop at the home position, then beyond the home position through a blowout stroke. The volume of liquid discharged during the downward main stroke between the upper stop position and the home position should, in theory, be equal to the volume of liquid aspirated while moving the plunger unit upward over the same stroke. In practice, however, some liquid may cling to the disposable tip, either on an interior surface or as a droplet on the bottom, or both. Additional air discharged from the pipette during the blowout stroke, between the home position and a fixed lower stop, assists in removing this remaining liquid. However, in most commercially available pipettes, the blowout stroke is relatively short—as a practical consequence of the limited possible stroke length when the plunger unit is to be controlled by a user's thumb. Such a short blowout stroke may not be sufficient to remove substantially all of the remaining liquid. Any remaining liquid that has not been successfully dispensed may tend to adversely affect the accuracy of a liquid dispensing operation performed via pipette. This is particularly true in the case of low-volume pipettes, especially those handling 50 μl or less. With low-volume pipettes, the ratio of adhering liquid to the desired sample size may be especially high.
To remove the remaining liquid—to the extent it is hanging as a drop at the bottom of a tip—a user may attempt to “touch off” and tap the distal end of the tip against the side of the receptacle. However, it may not always be practical to touch off in all circumstances, and not all adhering liquid may be removed this way. Automated or robotic liquid handling systems may not have the freedom to touch off against the side of a receptacle, or a protocol may not permit it. Moreover, liquid transferred to the side wall of a receptacle in this way might remain as a separate drop on the side wall, and in some cases might not rejoin the rest of the discharged sample as a user might desire.
This problem is well known and there have been some attempts made to solve it. U.S. Pat. No. 5,696,330 to Heinonen discloses a manual air displacement pipette that includes two concentric pistons—a “dosing piston” 18 that performs the primary liquid aspiration and dispending between the piston's upper position and its home position, and a secondary and separately movable “removing piston” 13 that moves during the blowout stroke to expel additional air and detach droplets. During a downward stroke of the Heinonen pipette, only the dosing piston is operative between the upper stop and the home position. At the home position, the dosing piston engages and causes movement of the secondary removing piston. Although this design will certainly discharge more air during blowout, it includes an excess of moving parts with tight tolerances, which may lead to long-term unreliability concerns and additional manufacturing expenses.
U.S. Pat. No. 8,318,108 to Suovaniemi et al. attempts to solve the problem in a slightly different manner—by using a single piston, but accelerating it during a blowout stroke. This too will discharge more air, more quickly during blowout, which will indeed tend to provide more effective blowout characteristics. However, because piston movement in a traditional manual handheld pipette is controlled by the user, the Suovaniemi technique is best implemented in an electronic pipette under motorized control. It is possible to design a fully manual pipette with this movement characteristic imparted to the piston entirely through mechanical means through a two-speed linkage, but this design would be more complex and once again employ more moving parts. And to discharge more air during a blowout stroke, even if accelerated, it may be necessary to lengthen the piston stroke of the pipette, which may in turn require lengthening the pipette to a size greater than a user might otherwise prefer.
Accordingly, there is a continuing need for a manual air displacement pipette with enhanced and improved blowout characteristics. Such a pipette would offer an increased ability to remove any remaining or adhering liquid from a pipette tip without substantially increased complexity, size, cost, or operational difficulties.
A handheld pipette according to the invention addresses some of the shortcomings of presently commercially available handheld pipettes, as described above.
Like prior conventional manual pipettes, the disclosed embodiment of the present invention comprises a hand holdable pipette body having a return spring biased plunger unit supported therein for axial movement from a first or upper stop position. To transfer a quantity of liquid, the user first sets the pipette to a desired volume setting, as indicated on a volume display on the pipette. Non-adjustable fixed-volume pipettes are, of course, available, but the most common handheld pipettes are volume adjustable as described herein.
The user then inserts the shaft of a pipette into a disposable tip, which becomes fixed to the end of the shaft. The user depresses a plunger button (which often also serves as a volume adjustment knob) to a tactile “home” position, dips the end of the tip into a liquid, and slowly releases the plunger button to bring the liquid into the pipette tip. All liquid remains in the disposable tip, and hence, removal and disposal of a tip prevents cross-contamination between samples upon subsequent uses of the pipette.
To dispense, the user moves the tip out of the initial liquid sample and positions it over a receptacle. As with prior manual pipettes, a pipette user holding the pipette of the present invention presses on the plunger button to move the plunger unit from the first stop position against the return spring, through the “home” position, to a second or lower stop position wherein the measured fluid contained in the pipette tip is expelled from the tip. The pipette user then allows the return spring to return the plunger to a “home” position adjacent the lower stop position. The “home” position is defined by a “soft” stop and is the starting position to which the plunger unit is returned for the start of each successive aspiration operation with the pipette. In particular, any downward movement of the plunger unit beyond the “home” position activates the “blow out” spring which generates a stronger upward force in opposition to such downward movement of the plunger unit. The pipette user senses or “feels” the start of the increase in the return force which provides the user an indication that the plunger unit has reached and is at the “home” position.
An embodiment of the pipette disclosed herein includes a segmented, stepped air displacement piston and a plurality of piston seals to enable an enhanced blowout stroke.
In an upper stroke portion, where the plunger unit is moved between the upper stop and the home position, a relatively narrow distal segment of the piston moves through a lower seal, and the pipette functions as a traditional air displacement pipette.
However, in at least part of a blowout stroke portion, where the plunger is moved between the home position and the fixed lower stop, the relatively narrow distal segment is decoupled from the lower seal, and air is displaced by a relatively wide proximal segment of the piston as it moves through an upper seal. The wider segment of the piston increases the volume of air displaced by the piston per unit of axial movement, and accordingly, increases the velocity and volume of the air moving through and out of the tip if the plunger unit is moved at the same speed. This increased air volume and velocity tends to improve the ability of the blowout stroke to discharge liquid that may be adhering to the tip following the dispensing stroke.
Accordingly, a number of shortcomings of other known manual air displacement pipettes are remedied by pipettes according to the invention. The invention may also be adapted to electronic air displacement pipettes, either as a substitute for or in addition to motor-based enhanced blowout strategies (such as a longer or accelerated blowout stroke).
These and other objects, features, and advantages of the invention will become apparent from the detailed description below and the accompanying drawings, in which:
The invention is described below, with reference to detailed illustrative embodiments. It will be apparent that a system according to the invention may be embodied in a wide variety of forms. Consequently, the specific structural and functional details disclosed herein are representative and do not limit the scope of the invention.
Referring initially to
The overall form factor of the pipette 110 and its disposable tip 114 is comparable to that of traditional pipettes, and the combination is used in the same ways and using the same techniques as would be performed using traditional pipettes.
The pipette has a plunger button 116 connected to a plunger rod 118. The button 116 and rod 118 are spring-biased to a fully-extended position. The plunger rod 118 is coupled to a piston within the pipette 110 (not shown). And as with traditional pipettes, when the plunger button 116 is depressed, it moves the plunger rod 118 and the piston downward through the shaft 112 toward a nozzle at a distal end 120 of the shaft 112, from its uppermost position against an upper volume-setting stop.
As in traditional manual pipettes, the plunger button 116 is spring-biased relative to two positions, namely a released and extended position and a home position. There is a fully-depressed blowout position when the plunger button 116 is depressed past the home position. With no pressure applied to the plunger button 116, a plunger spring biases the plunger button 116 upward against an upper volume-setting stop, the position of which is adjusted by turning the plunger button 116 and a stop position adjustment mechanism as discussed above. Some pipettes, including the pipette 110 illustrated in
At the home position, with the plunger button 116 partially depressed, the resistance to depression of the plunger button increases. As is common in handheld pipette construction, a secondary pre-loaded blowout spring adds to the resistance offered by the plunger spring. The increased resistance is sensed by the pipette user and defines the home position. Between the released and extended position and the home position, only the plunger spring biases the plunger button position upward toward its extended position, and a relatively light first force level is required to act against the spring bias.
The plunger button 116 is released from the home position to the fully extended position to aspirate a desired volume of liquid, and subsequently moved from the extended position to the home position, and onward to the lower stop to dispense the liquid.
Between the home position and a fully-depressed blowout position, both the plunger spring and the blowout spring act upward against the plunger button 116, and a higher second force level is required to act against the spring bias. This configuration including a primary plunger spring and a secondary blowout spring is common in handheld pipettes.
After dispensing, the plunger button 116 is moved from the home position through to the end of the blowout position to eject any remaining liquid from the pipette tip 114.
Accordingly, at the home position, the user feels a tactile transition between the two spring forces, and by exerting a force between the first level and the higher second level, the user can easily keep the plunger button 116 at the home position.
In a traditional handheld pipette, the plunger button acts directly through the plunger rod to a cylindrical piston, which maintains an air-tight seal with the liquid end of the pipette via a seal within the pipette. The seal remains in a fixed position with respect to the liquid end and further forms an air-tight seal with respect to an interior portion of the liquid end. Accordingly, as the plunger button is manipulated, the piston is caused to move through the seal and displace an air volume within the liquid end. As an orifice is provided at a distal end of the pipette tip, and a substantially air-tight seal is maintained at all other places, the only path for a liquid (or any fluid) to enter or exit the tip is via the orifice, and there is a deterministic relationship between the volume of air displaced by the piston and the volume of liquid manipulated by the pipette.
In many regards, the pipette 110 may be configured similarly to a traditional handheld manual pipette. One exemplary pipette configuration that may be employed and reconfigured as set forth herein is described in U.S. Pat. No. 5,700,959 to Homberg, which is hereby incorporated by reference as though set forth in full. The same volume setting mechanisms, springs, drive mechanisms, plunger mechanisms, and body parts may generally be employed. The primary differences reasonably necessary for a pipette 110 according to the invention to function as described herein are a segmented, stepped piston and at least two piston seals as described below and with reference to
By way of comparison, a traditional air displacement pipette is illustrated in
Like the embodiment illustrated in
The volume setting mechanism includes a volume knob 224 and a volume-setting screw 226, which adjusts the position of an upper stop in the pipette, thus limiting the pipette's stroke length. The plunger rod 216 acts against a piston assembly 228, which is spring-biased upward by a stroke spring 230 and a blowout spring 232, the latter of which begins further compression (past its initial pre-loaded state) only as the piston assembly 228 crosses a specified home position.
The piston assembly 228 includes a cylindrical piston 234 extending axially into the shaft 222; this piston 234 seals against an annular seal ring 240 that is kept in place within the shaft 222 by a seal retainer 242, which in turn is held in position against a step 238 in the shaft 222 by pressure applied from the blowout spring 232. The seal retainer and/or the seal ring 240 should also seal against the shaft 222, to avoid presenting a path for air leakage.
Accordingly, axial movement of the piston 234 through the seal ring 240 displaces air within the shaft 222; and as the shaft is otherwise entirely closed (and a tip is generally mounted and sealed thereto), there is no other path and air and liquid must enter and exit the tip through its distal open end.
Also included in
The lower segment 322 and the lower seal ring 318 are sized and configured so that a lower seal is formed between the piston 320 and the lower seal ring 318 when the lower segment 322 is positioned axially within the lower seal ring 318. Similarly, the upper segment 326 and the upper seal ring 316 are sized and configured so that an upper seal is formed between the piston 320 and the upper seal ring 316 when the upper segment 326 is positioned axially within the upper seal ring 316. These upper and lower seals will be described in further detail in connection with
In
For example, in a pipette according to the invention having a 200 μl capacity the lower segment 322 of the piston may have a diameter of approximately 4 mm, and the distance between the upper stop and the home position may be about 16 mm. As the piston moves between the upper stop and home position, it then displaces 200 μl of air, which in turn moves an approximately equal amount of liquid in or out of the pipette tip. Similarly, in a pipette according to the invention having a 20 μl capacity, the lower segment 322 may have a diameter of approximately 1.25 mm.
It will be noted that in
As shown in
As noted above, the embodiment schematically illustrated in
Like
Also included in
As in the embodiment pictured in
In
In a pipette according to the invention having a 200 μL capacity, as the piston moves between the upper stop and home position, it then displaces 200 μl of air, which in turn moves an approximately equal amount of liquid in or out of the pipette tip.
In
It will be noted that the piston 620 of
The compression of the air in the sealed region 712 continues until the piston 620 approaches the end of the blowout stroke as illustrated in
As shown in
An alternative embodiment of a pipette according to the invention employs a segmented piston employing a plurality of moving seals against substantially cylindrical inner surfaces of the pipette body, shaft, or a cylinder module.
Also included in
In
Volumes are calculated in a manner similar to that of the embodiment of
It will be noted that in
As shown in
One possible alternative embodiment of a pipette as illustrated schematically in
It will be noted that another alternative embodiment of the implementation of
It will be recognized that the configurations illustrated in
The embodiment illustrated schematically in
Like the prior art pipette illustrated in
The volume setting mechanism, including a volume knob 1224 and a volume-setting screw 1226 is comparable to the mechanism present in a traditional pipette. The plunger rod 1216 acts against a piston assembly 1228, which is spring-biased upward by a stroke spring 1230 and a blowout spring 1232, the latter of which is installed in a pre-loaded state, and compressed further only as the piston assembly 1228 crosses a specified home position.
The piston assembly 1228 of
In the disclosed embodiment, the piston assembly 1228 is manufactured as a single machined and polished piece of a suitable metal such as stainless steel. Other materials may also be suitable for this purpose, such as machined ceramics or molded polymers like polyetheretherketone (PEEK). If desired, the piston assembly 1228 can also be assembled from multiple parts and materials. The piston assembly 1228 is coupled to the plunger rod 1216 by a tight friction fit, although in alternative embodiments the piston assembly 1228 and plunger rod 1216 may be affixed together by a screw joint, adhesives, or may even be machined as a single unitary component.
The shaft 1222 includes a lower seal ring 1246 and an upper seal ring 1248 held in place by a seal retainer 1250; the retainer drops into place within the shaft 1222 and is held in position by pressure from the blowout spring 1232. As illustrated, the lower seal ring 1246 further seals against the shaft 1222, thereby preventing air above the retainer 1250 from undesirably leaking through a path between the retainer 1250 and the shaft 1222.
As in
As described above in connection with the prior art pipette of
In the disclosed embodiment, which roughly represents a pipette having a maximum 200 μl liquid capacity (for simplicity and clarity of illustration), the piston assembly 1228 may have advantageous dimensions as follows: the lower segment 1240 has a diameter of approximately 4 mm; the waist segment 1242 has a diameter of approximately 2-3 mm; the upper segment 1244 has a diameter of approximately 8 mm. The pipette 1210 has a main stroke length of approximately 16 mm and a blowout stroke length of about 5 mm; together, this total length of 21 mm begins to approach the longest reasonably comfortable stroke length controllable by a thumb-operated plunger button.
With these dimensions, the lower segment 1240 of a pipette 1210 according to the invention, traversing over the 16 mm main stroke, length displaces up to 200 μl of measured capacity, and during a 5 mm blowout stroke, approximately 250 μl of additional air is discharged via displacement from the upper segment 1244. In comparison, a traditional pipette would discharge only 62.5 μl of air during a blowout stroke of equal length (and equal duration), which—being less air, delivered at a slower velocity—will not be as effective at dislodging any remaining liquid in and on the tip. The disclosed pipette 1210 with the dimensions set forth above provides four times as much air during the blowout stroke. However, it will be noted that the diameters of the waist segment 1242 and the upper segment 1244 may be varied, and the additional air provided during the blowout stroke may accordingly be configured according to desired performance parameters.
Similarly, in a pipette according to the invention having a 20 μl capacity, with a 16 mm main stroke and a 5 mm blowout stroke, and with a piston having a lower segment diameter of about 1.25 mm and an upper segment diameter of about 2.5 mm, the blowout stroke would rapidly expel about 25 μl of air, as compared to slightly more than 6 μl for a traditional pipette having the same capacity and stroke lengths.
Of course, air displacement pipettes having different capacities (e.g. as low as 2 μl, and up to 5 μl or more) are readily commercially available, and a practitioner of ordinary skill in the art of mechanical design would be able to adapt the dimensions of the disclosed pipette to suit different pipettes of different capacities. The embodiments described herein are merely exemplary. The invention is believed to be particularly advantageous in connection with lower-volume air displacement pipettes, 200 μl or smaller, and especially 50 μl or smaller, as the portion of liquid that may adhere to the tip is greater in smaller volumes, relative to the total volume of liquid transferred.
The pipette of
The embodiment illustrated schematically in
The pipette of
The volume setting mechanism, including a volume knob 1324 and a volume-setting screw 1326 is comparable to the mechanism present in a traditional pipette. The plunger rod 1316 acts against a piston assembly 1328, which is spring-biased upward by a stroke spring 1330 and a blowout spring 1332, the latter of which is installed in a preloaded state, and compressed further only as the piston assembly 1328 crosses a specified home position.
The piston assembly 1328 of
The shaft 1322, as illustrated, defines a lower chamber 1346 and an upper chamber 1348; as noted above with reference to
As in
As with other embodiments of the present invention, the seal rings 1342 and 1344 and the chambers 1346 and 1348 should be designed and manufactured with sufficient durability to avoid degrading over an acceptable service interval for the pipette; unlike traditional pipettes with cylindrical pistons and a single seal, the seal rings 1342 and 1344 regularly traverse over the grooves 1350 and 1352 in the lower and upper chambers 1346 and 1348, respectively, which may tend to increase seal wear. Accordingly, the grooves 1350 and 1352 in the chambers 1346 and 1348 may be provided with chamfers or rounded edges to reduce abrasion and damage.
In the disclosed embodiment, which once again roughly represents a pipette having a maximum 200 μl liquid capacity (for simplicity and clarity of illustration), the piston assembly 1328 and chambers 1346 and 1348 may have advantageous dimensions as follows: the lower seal ring 1342 has a diameter of approximately 4 mm and the upper seal ring 1344 has a diameter of approximately 8 mm. The pipette 1310 has a main stroke length of approximately 16 mm and a blowout stroke length of about 5 mm; together, this total length of 21 mm begins to approach the longest reasonably comfortable stroke length controllable by a thumb-operated plunger button.
With these dimensions, the lower seal ring 1342 of a pipette 1310 according to the invention, traversing over the 16 mm main stroke, length displaces up to 200 μl of measured capacity, and during a 5 mm blowout stroke, approximately 250 μl of additional air is discharged via displacement from the upper seal ring 1344, bypassing the lower seal ring 1342 via the lower groove 1350. The diameter of the upper seal ring 1344 may be varied, and the additional air provided during the blowout stroke may accordingly be configured according to desired performance parameters.
Similarly, in a pipette according to the invention having a 20 μl capacity, with a 16 mm main stroke and a 5 mm blowout stroke, and with a piston having a lower segment diameter of about 1.25 mm and an upper segment diameter of about 2.5 mm, the blowout stroke would rapidly expel about 25 μl of air, as with the embodiment pictured in
The pipette of
It should be observed that while the foregoing detailed description of various embodiments of the present invention is set forth in some detail, the invention is not limited to those details and a pipette with enhanced blowout characteristics made according to the invention can differ from the disclosed embodiments in numerous ways. In particular, it will be appreciated that embodiments of the present invention may be employed in many different fluid-handling applications. The terms “upper” and “lower” are used in various contexts herein, in both the written description and the claims, with reference to a standard traditional handheld pipette oriented vertically, with a distal opening at the lower end and a plunger button at an upper end; it should be recognized that those terms are used for purposes of clarity and convenience and should not be considered limiting with respect to pipettes or components thereof that may be positioned in different orientations. Although the invention is described and illustrated in the context of an adjustable-volume manual handheld pipette, it is equally applicable to other types of air displacement pipettes, including fixed-volume pipettes, electronic pipettes, and various types of benchtop and freestanding liquid handling installations. It should be noted that functional distinctions are made above for purposes of explanation and clarity; structural distinctions in a system or method according to the invention may not be drawn along the same boundaries. Hence, the appropriate scope hereof is deemed to be in accordance with the claims as set forth below.