Air distribution apparatus

Information

  • Patent Grant
  • 11376925
  • Patent Number
    11,376,925
  • Date Filed
    Monday, April 15, 2019
    5 years ago
  • Date Issued
    Tuesday, July 5, 2022
    a year ago
Abstract
The present embodiments relate to an air distribution apparatus for distributing conditioned airflow from a roof mounted air conditioner to the inside of a vehicle, which includes an inlet port adapted to receive the conditioned airflow from the roof mounted air conditioner. An outlet port, which is disposed adjacent to each longitudinal end of the apparatus, delivers conditioned airflow to the vehicle. An internal supply duct is adapted to evenly split the conditioned airflow to the outlet ports.
Description
CLAIM TO PRIORITY

This non-provisional patent application claims priority to and benefit of, under 35 U.S.C. § 119(e), Australian patent application AU 2018901268, filed Apr. 16, 2018, and titled “Air Distribution Apparatus”, all of which is incorporated by reference herein.


FIELD OF INVENTION

The present embodiments relate to an air distribution apparatus and, in particular, to an air distribution apparatus for a vehicle air conditioner.


An air distribution apparatus for a rooftop air conditioner for a recreational vehicle will be described hereinafter with reference to this application. However, it will be appreciated that the invention is not limited to this particular field of use.


BACKGROUND

The following discussion of the prior art is intended to place the invention in an appropriate technical context and enable the associated advantages to be fully understood. However, any discussion of the prior art throughout the specification should not be considered as an admission that such art is widely known or forms part of the common general knowledge in the field.


Air conditioning systems are commonly used in order to make an environment more pleasing to occupants. This is particularly relevant when the occupants are in a confined space, such as a caravan, mobile home or other recreational vehicle.


As used herein, the term ‘recreational vehicle’ refers to motor homes, recreational vans, and other similar vehicles. Each of these has relatively confined spaces for the occupants to reside in and, as due to the nature of their use it is often that such vehicles are often used with a number of people, such as couples or families.


Conventional recreational vehicles have air conditioning systems that are built into the vehicle in some manner. For example, the air conditioning unit can be installed into the floor or roof and direct air around the interior cabin of the vehicles so that conditioned air is then provided for the occupants.


One problem with roof mounted air conditioners is the operational noise they generate. This noise is the result of airflow being delivered to the inside of the vehicle through ceiling mounted air distribution apparatuses, or boxes, containing outlet ports. Additionally, noise can come from operational noise from the roof mounted air conditioner.


One solution to this problem is to reduce the speed of the fans delivering the airflow to the vehicle. In this way the velocity and airflow noise across the outlet ports will be reduced. Reducing the fan speed will also reduce the operational noise of the air conditioner. However, the main problem with this solution is that less airflow is delivered to the vehicle, which in turn, reduces the distance the air flow can reach. Therefore, by simply reducing the fan speed, the areas of the vehicle that are away from the outlet ports will not have the same air conditioning affect.


It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.


SUMMARY

According to some embodiments, there is provided an air distribution apparatus for distributing conditioned airflow from a roof mounted air conditioner to the inside of vehicle, the apparatus including:


an inlet port adapted to receive the conditioned airflow from the roof mounted air conditioner;


at least one outlet port disposed adjacent each longitudinal end of the apparatus for delivering conditioned airflow to the vehicle; and


an internal supply duct adapted to evenly split the conditioned airflow to each the outlet port.


In one embodiment, the internal supply duct includes a raised splitter formation and two legs, each leg leading to one longitudinal end.


In one embodiment, each leg includes an upper convex surface for substantially redirecting the conditioned airflow.


In one embodiment, each leg includes a lower concave surface for substantially redirecting the conditioned airflow.


In one embodiment, each leg includes a lower convex surface downstream of the lower concave surface such that the height of each leg is relatively narrower at the centre of each leg.


In one embodiment, the height of each leg is relatively higher at the lateral sides of each leg.


In one embodiment, each leg includes a pair of opposed side walls, the side walls substantially diverging as each leg approaches each longitudinal end.


In one embodiment, each side wall is substantially curved.


In one embodiment, the apparatus includes a pair of outlet ports disposed at each longitudinal end.


In one embodiment, the supply duct includes a divider formation extending along a portion of each leg for evenly separating the conditioned airflow between each outlet port.


In one embodiment, the divider formation extends between the lower convex surface and a top surface of each leg.


In one embodiment, the raised splitter formation is substantially aligned with the centre axis of the inlet port.


In one embodiment, the air distribution apparatus includes a flexible inlet supply duct for fluidly connecting the inlet port to the roof mounted vehicle air conditioner.


In one embodiment, each leg includes a cross sectional area which increases as each leg respectively approaches each longitudinal end such that the velocity of the conditioned airflow reduces thereby reducing the airflow noise generated at each longitudinal end.


In one embodiment, the flexible inlet supply duct includes large radiused corners for minimising the flow disturbance of the conditioned airflow into the inlet port.


In one embodiment, each outlet port includes at least one movable louver for directing the conditioned airflow leaving each outlet port.


In one embodiment, the air distribution apparatus includes a pair of laterally disposed return air entry ports adapted to return air from the vehicle to the roof mounted vehicle air conditioner.


Reference throughout this specification to “one embodiment”, “some embodiments” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment”, “in some embodiments” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:



FIG. 1a is a perspective view of an air conditioner shown installed on a recreational vehicle;



FIG. 1b is a partly cut away perspective view of an air distribution apparatus according to one embodiment of the present invention shown installed on the inside of a recreational vehicle of FIG. 1;



FIG. 2 is a perspective view of the air conditioner of FIG. 1a shown without its top cover;



FIG. 3a side cross-sectional view of the air distribution apparatus of FIG. 1b;



FIG. 3b is a further cross-sectional view of the air distribution apparatus of FIG. 1b removed from the recreational vehicle of FIG. 1a;



FIG. 4 is an underside perspective view of air distribution apparatus of FIG. 1b, installed on the inside of the recreational vehicle of FIG. 1a;



FIG. 5 is a topside perspective view of air distribution apparatus of FIG. 1b, removed from the recreational vehicle; and



FIG. 6 top side cross-sectional view of the air distribution apparatus of FIG. 1b, removed from the recreational vehicle.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. In the drawings, the same elements are denoted by the same reference numerals throughout. In the following description, detailed descriptions of known functions and configurations incorporated herein have been omitted for conciseness and clarity.


Referring to the accompanying drawings and initially to FIGS. 1a and 1b, there is provided an air distribution apparatus 10 for a vehicle roof mounted air conditioner 12. The air distribution apparatus 10 is mounted to the inside ceiling 11 of the vehicle 14. The apparatus 10 is fluidly connected to the air conditioner 12 which is mounted directly above on the vehicle's roof surface. Air distribution apparatus 10 is used to distribute the conditioned air from the air conditioner to the inside of the vehicle. In some applications, the air distribution apparatus is known generally as an air distribution box. Further, as used herein, the term vehicle is intended to encompass all such motorised and non-motorised vehicles. In the illustrated embodiment, the vehicle is a recreational vehicle such as a caravan or motor home.


Typical to the application, the roof mounted air conditioner 12 is of the type known as a packaged air conditioner, whereby the evaporator components are housed on the same base and within the same housing as the condenser components. This is contrary to a split type air conditioner, where the condenser components are housed remotely from the evaporator components. For this reason, the air conditioner 12 has an outer cover 16 having openings 20 and 18 to respectively allow for the ingress and egress of outside air to the condenser heat exchange area of the air conditioner.


More specifically, FIG. 2 shows a view of the air conditioner 12 with the outer cover 16 removed thereby revealing condenser fan 22 that draws outside air into a heat exchange area through openings 20. A compressor 24 is provided, which can be of any commercially acceptable type suitable for a portable air conditioner. Operatively connected to the compressor is a condenser coil 28.


As is commonly known in the art, air drawn in from the outside is forced across the condenser coil 28 to cool the contained refrigerant. The cooled refrigerant then passes through an expansion valve and into the evaporator coil 30 to absorb heat from the indoor air that passes over it. Therefore, air leaving the evaporator coil becomes conditioned. The conditioned air is then delivered to the air distribution apparatus 10 by way of an evaporator fan 32 which also draws in the return air from the inside of the vehicle over the evaporator coil 30. The refrigerant is then compressed and returns to the condenser coil 28 to once again be cooled. As should be apparent to those skilled in the art, this process can be reversed such that the conditioned air is heated rather than cooled.


Referring to FIG. 3a, we can see a side sectioned view of an example embodiment of the air distribution apparatus 10 as it would be installed in FIG. 1b. As shown, the air distribution apparatus includes a main body 33 housing an inlet port 34 adapted to receive conditioned airflow 36 from the roof mounted vehicle air conditioner 12. At least one outlet port 40 is disposed adjacent each longitudinal end 42 of the apparatus, for delivering conditioned airflow 36 to the vehicle 14.


As best shown in FIG. 4, the apparatus 10 includes a pair of outlet ports 40 at each longitudinal end 42. Each outlet port 40 includes a pair of vertical spaced pivotally moveable louvers 44 for directing the conditioned airflow leaving each outlet port. In the illustrated embodiment, these louvres are movable during air conditioner operation to evenly distribute the conditioned airflow to different areas of the vehicle. Additionally, louvres 44 may be movable between a completely open to a completely closed configuration.



FIG. 5 depicts the apparatus 10 removed from the ceiling of the vehicle 14 to illustrate the features on the top surface. As can be seen, the inlet port 34 is connected to a flexible supply duct 38, which is then connected to evaporator fan 32 of the roof mounted air conditioner 12 when installed (see FIG. 3a). By having a flexible supply duct, minor positional misalignments between the inlet port and the evaporator fan 32 during installation can be advantageously compensated for, making the apparatus of the present invention easier and consequently less expensive to install. By having an extendible length, the flexible supply duct 38 also allows for different roof to ceiling distances making apparatus 10 applicable to different vehicle installations. The flexible supply duct 38 includes large radiused corners 46 for minimising the flow disturbance and pressure drop of the conditioned airflow into the inlet port 34. Similarly, the inlet port 34 and the evaporator fan 32 have corresponding radiused corners to sealingly connect with the flexible supply duct 38 and minimise pressure drop of the delivered airflow.


With reference to FIG. 3b, which shows the apparatus 10 removed from installation and partly sectioned, the apparatus 10 further includes an internal supply duct 48 for evenly distributing the conditioned airflow 34 from the inlet port 30 to each longitudinal end 42. The internal supply duct includes a raised splitter formation 50 substantially aligned with the lateral centre axis of the inlet port 34 when installed. The raised splitter formation 50 evenly splits the conditioned airflow 36 between a pair of legs 52, which extend to each longitudinal end 42 and the outlet ports 40.


Looking more closely at the inside of the internal supply duct 48, each leg 52 is defined by an upper convex surface 54 and a lower concave surface 56, relative to the inside of the internal supply duct. An upper straight surface 58 and a lower convex surface 60 are respectively provided downstream of the upper convex and lower concave surfaces. By having both the upper convex surface 54, lower concave surface 56 and lower convex surface 60, a smooth redirection of the conditioned airflow 36 from the air conditioner is established resulting in minimal pressure drop of the conditioned airflow between the inlet port 34 and each outlet port 40.


With reference to FIG. 6, we can see another sectioned view through the apparatus 10 removed from installation, however, from the perspective of the top looking down. Each leg 52 further includes a pair of opposed curved side walls 62, which generally diverge as each leg transitions to each longitudinal end 42. Again, the gradual divergence of the side walls minimises the pressure drop as the airflow travels across each leg 52.


As mentioned earlier, each leg includes a lower convex surface 60, which transitions from the lower concave surface 56. As can be seen, the lower convex surface 60 extends between the opposed side walls 62 and rises at its centre where it is separated by a divider formation 64. As discussed in more detail below, a divider formation 64 has been provided at each longitudinal end 42 to assist in evenly separating the conditioned airflow between each outlet port 40. Whilst not clearly apparent from this view, each divider formation 64 extends between upper straight surface 58 and lower convex surface 60 to completely separate the conditioned airflow between the outlet ports. Divider formation 64 also acts to support one end of each pivotally moveable louver 44.


Lower convex surface 60 has a convex profile from the perspective of each end of the apparatus. This is contrary to the upper convex surface, which has convex profile when looking at the side of the apparatus 10. Because of the lower convex surface 60, the height of each leg 52 is relatively narrower at its centre, and relatively higher at the sides of each leg. More specifically, lower convex surface 60 provides a reduced cross-sectional area in the centre portion of each leg 52, proximate the divider formation 64, and an increased cross-sectional area at the sides of each leg. As should be therefore appreciate it, the airflow will be promoted to the sides of each leg proximate the sidewalls 62, where a larger cross-sectional area provides less resistance. By separating the airflow in this way, a more even velocity distribution across the outlet ports is provided with minimal pressure drop loss. This, in turn, minimises the possibility of one outlet port 40 having a greater share of the airflow than any of the others. Lower convex surface 60 terminates with a step 61 leading to each outlet port 40.


Returning to FIG. 4, return air is supplied to the air conditioner through a pair of laterally disposed return air entry ports 66. This return air travels to the roof top air conditioner via pathways (not shown) on each side of the internal supply duct 48.


The apparatus of the present embodiments is formed primary from moulded plastics material as is commonly known in the art. However, other materials may be used without departing from the scope of the invention.


Referring again to FIGS. 3a and 3b, in use, conditioned airflow 36 from the roof air conditioner 12 flows into the flexible supply duct 38 where it enters the inlet port 32. From there the airflow 36 enters the internal supply duct 48. The airflow then contacts the raised splitter formation 50 to be evenly split between each leg 52. Conditioned air then travels to each longitudinally end 42 where it is again split by lower convex surface 60 and the divider formation 64 (FIG. 6) to be evenly delivered to each outlet port 40 and into the inside of the vehicle 12. Movable louvers 44 can oscillate during operation to deliver the conditioned airflow between proximate and distal regions of the inside of the vehicle.


It should be appreciated that due to the configuration of the internal supply duct 48, an even airflow split is provided between the two legs 52. In addition to this, the shape of the side walls 62, the lower convex surface 60 and the provision of the divider formation 64, result in equal flow to each outlet port 40 at each longitudinal end 42. In a practical sense, this means that each outlet port 40 equally accommodates the airflow distribution load, resulting in equal exit velocity leaving the outlet ports and consequently equal noise emissions from each outlet port. This is turn, results in lower overall air distribution noise level compared to prior art devices where non-even airflow distribution across the outlet ports create a higher noise from the outlet port accommodating the greatest airflow velocity.


Moreover, in a further aspect of the invention, the cross-sectional area of each of leg 52 increases as it transitions towards each longitudinal end and each lateral side of each leg, due to the diverging sidewalls 62 and lower convex surfaces 60 of the internal supply duct 48. In this way, the velocity of conditioned airflow 36 reduces as it approaches each longitudinal end 42 but is still evenly split between each outlet port 40. This reduction of velocity will, in turn, reduce the noise generated by the airflow exiting each outlet port 40.


Additionally, due to the smooth surfaces and gradual redirection provided by the configuration of internal supply duct 48 and large radius corners of the flexible supply duct and inlet port 34, the apparatus of the present invention provides a smooth non-restrictive path for the conditioned airflow with minimal interruptions for pressure loss. As a result, the speed of the fan providing the conditioned airflow can be slowed to supply a given airflow rate relative to prior art devices. In other words, using the air distribution apparatus of the present embodiments, increased airflow will be provided for a given supply fan rotational speed. Using the apparatus of the present embodiments compared to prior art devices results in a reduction of operational noise from the air conditioner and reduced energy use.


Advantageously, the apparatus of the present embodiments reduces the overall noise generated inside a recreational vehicle due the operation of a roof top air conditioner. Initially, this is due to providing an equal airflow distribution to each of the outlet ports, minimising the possibility of a high velocity noisy airflow from any one of the outlet ports. Secondly, by having an airflow path defined by the internal supply duct, a minimal pressure loss is provided between the exit of the evaporator fan 32 and each outlet port, resulting in low airflow distribution noise through the apparatus and relatively lower evaporator fan rotation speed. And thirdly, by the reducing the velocity of the airflow as it travels towards each outlet port, the noise of the airflow exiting each outlet ports is generally reduced.


It should be appreciated that in the above description of exemplary embodiments, various features are sometimes grouped together in a single embodiment, Figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this invention.


In the description provided herein, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known methods, structures and techniques have not been shown in detail in order not to obscure an understanding of this description.


Those skilled in the art will recognize that other and further modifications may be made thereto without departing from the spirit of the invention, and it is intended to claim all such changes and modifications as falling within the scope of the invention. For example, any formulas given above are merely representative of procedures that may be used. Functionality may be added or deleted from the block diagrams and operations may be interchanged among functional blocks. Steps may be added or deleted to methods described within the scope of the present invention.


FEATURE LIST





    • air distribution apparatus 10

    • roof mounted air conditioner 12

    • vehicle 14

    • outer cover 16

    • openings 18 and 20

    • condenser fan 22

    • compressor 24

    • condenser coil 28

    • evaporator coil 30

    • evaporator fan 32

    • main body 33

    • inlet port 34

    • conditioned airflow 36

    • flexible supply duct 38

    • outlet port 40

    • longitudinal end 42

    • moveable louvers 44

    • large radiused corners 46

    • internal supply duct 48

    • raised splitter formation 50

    • upper convex surface 54

    • lower concave surface 56

    • upper straight surface 58

    • lower convex surface 60

    • step 61

    • opposed curved side walls 62

    • divider formation 64

    • return air entry ports 66




Claims
  • 1. An air distribution apparatus for distributing conditioned airflow from a roof mounted air conditioner to an inside of a vehicle, said air distribution apparatus including: an inlet port adapted to receive said conditioned airflow from said roof mounted air conditioner;at least two outlet ports corresponding to two longitudinal ends wherein one of said at least two outlet ports is disposed at one longitudinal end of said two longitudinal ends and the other of said at least two outlet ports is disposed at the other longitudinal end of said two longitudinal ends of said air distribution apparatus for delivering said conditioned airflow to said vehicle; andan internal supply duct adapted to evenly split said conditioned airflow to each of said at least two outlet ports;said internal supply duct including a fixed splitter formation and two legs, said fixed splitter formation centrally disposed relative to said internal supply duct, wherein each leg of said two legs has a first convex surface and a second concave surface;wherein said second concave surface of said each leg forms a raised portion of said fixed splitter formation and defines a space beneath said raised portion of said fixed splitter formation and wherein said each leg leads to one of said two longitudinal ends, each of said two longitudinal ends having a step proximate said at least two outlet ports defining an area for at least one louver;wherein said step of each of said two longitudinal ends has a greater height in a center of said each leg than at sides of said each leg.
  • 2. The air distribution apparatus according to claim 1, wherein each said first convex surface is an upper convex surface for substantially redirecting said conditioned airflow.
  • 3. The air distribution apparatus according to claim 1, wherein said second concave surface is a lower concave surface for substantially redirecting said conditioned airflow.
  • 4. The air distribution apparatus according to claim 3, wherein each leg includes a lower convex surface downstream of said lower concave surface such that a height of each leg is smaller at the center of each said leg than at sides of each said leg.
  • 5. The air distribution apparatus according to claim 4, wherein the height of each leg is greater at sides of each said leg than the center of each said leg.
  • 6. The air distribution apparatus according to claim 1, wherein each leg includes a pair of opposed side walls, said pair of opposed side walls substantially diverging as each said leg approaches each of said two longitudinal ends.
  • 7. The air distribution apparatus according to claim 6, wherein each side wall of said pair of opposed side walls is substantially curved.
  • 8. The air distribution apparatus according to claim 4, wherein said air distribution apparatus includes said at least two outlet ports being a pair of outlet ports disposed at each longitudinal end.
  • 9. The air distribution apparatus according to claim 8, wherein said internal supply duct includes a divider formation extending along a portion of each leg of said two legs for evenly separating the conditioned airflow between each outlet port of said at least two outlet ports.
  • 10. The air distribution apparatus according to claim 9, wherein said divider formation extends between said lower convex surface and a top surface of said each leg.
  • 11. The air distribution apparatus according to claim 1, wherein said fixed splitter formation is substantially aligned with a center axis of said inlet port.
  • 12. The air distribution apparatus according to claim 1, including a flexible inlet supply duct for fluidly connecting said inlet port to said roof mounted air conditioner.
  • 13. The air distribution apparatus according to claim 1, wherein each leg of said two legs includes a cross sectional area which increases as said each leg respectively approaches each longitudinal end such that a velocity of the conditioned airflow reduces thereby reducing an airflow noise generated at each said longitudinal end.
  • 14. The air distribution apparatus according to claim 12, wherein said flexible inlet supply duct includes radiused corners for minimising a flow disturbance of said conditioned airflow into said inlet port.
  • 15. The air distribution apparatus according to claim 1, wherein each said at least one louver is a movable louver for directing the conditioned airflow leaving each of said at least two outlet ports.
  • 16. The air distribution apparatus according to claim 1, including a pair of laterally disposed return air entry ports adapted to return air from said vehicle to said roof mounted air conditioner.
Priority Claims (1)
Number Date Country Kind
2018901268 Apr 2018 AU national
US Referenced Citations (69)
Number Name Date Kind
2504472 Van Alsburg Apr 1950 A
2701998 Wulle Feb 1955 A
3343473 Gillick Sep 1967 A
3648591 Winnett Mar 1972 A
3680468 Schueler Aug 1972 A
D226381 Harty, Jr. Feb 1973 S
3727537 Harty, Jr. Apr 1973 A
4048910 Weir Sep 1977 A
4182227 Roy Jan 1980 A
D284025 Armstrong May 1986 S
4641502 Aldrich et al. Feb 1987 A
4672818 Roth Jun 1987 A
D306341 Bales et al. Feb 1990 S
5046405 Roy Sep 1991 A
5501634 Wilder Mar 1996 A
5531641 Aldrich Jul 1996 A
6213197 Ebbeson Apr 2001 B1
D510996 Vladika Oct 2005 S
7140192 Allen et al. Nov 2006 B2
D535431 Roland Jan 2007 S
7171822 Allen et al. Feb 2007 B2
7234315 Allen et al. Jun 2007 B2
7237397 Allen Jul 2007 B2
D567352 Hollingsworth et al. Apr 2008 S
D570465 Miyake et al. Jun 2008 S
7419368 Milks Sep 2008 B2
D653323 Jacak et al. Jan 2012 S
D654998 Zakula et al. Feb 2012 S
D655403 Zakula et al. Mar 2012 S
D661386 Bergin Jun 2012 S
D681794 Lin et al. May 2013 S
8535127 Malott Sep 2013 B2
8568209 Boxum Oct 2013 B2
D702827 Mase et al. Apr 2014 S
D712531 Bergin Sep 2014 S
D715907 Bergin Oct 2014 S
D716925 Bergin Nov 2014 S
D746725 Stopka Jan 2016 S
D771231 Chen et al. Nov 2016 S
D784511 Jonas et al. Apr 2017 S
9631832 Malott Apr 2017 B2
D785771 Bergin May 2017 S
D785772 Bergin May 2017 S
D800294 Jonas et al. Oct 2017 S
D800295 Jonas et al. Oct 2017 S
D811566 Liu et al. Feb 2018 S
D815724 Jonas et al. Apr 2018 S
D817466 Moseley May 2018 S
9975405 Siddiqui et al. May 2018 B2
D824499 Williamson et al. Jul 2018 S
10093152 Allard et al. Oct 2018 B2
D834163 Liu et al. Nov 2018 S
D841138 Williamson et al. Feb 2019 S
10252598 Hipp-Kalthoff et al. Apr 2019 B2
D850609 Bergin Jun 2019 S
D862668 Moseley Oct 2019 S
D865926 Moseley Nov 2019 S
10589593 Westendarp et al. Mar 2020 B2
D884869 Jonas et al. May 2020 S
D917036 Hederstierna Apr 2021 S
20060052050 Malott et al. Mar 2006 A1
20070227693 Allen et al. Oct 2007 A1
20100218531 Khan Sep 2010 A1
20160121695 Sakurai May 2016 A1
20160311288 Mayo Mayo et al. Oct 2016 A1
20170203632 Westendarp et al. Jul 2017 A1
20190047353 Williamson et al. Feb 2019 A1
20190047354 Williamson et al. Feb 2019 A1
20190315197 Williamson et al. Oct 2019 A1
Foreign Referenced Citations (113)
Number Date Country
2005206673 Aug 2007 AU
319629 May 2008 AU
319630 May 2008 AU
2004202967 Dec 2010 AU
343538 Jul 2012 AU
2007237183 Sep 2012 AU
349663 Jul 2013 AU
2007202766 Aug 2013 AU
2012202939 Sep 2013 AU
2008288394 May 2014 AU
361242 Apr 2015 AU
2012261549 May 2015 AU
2012265763 Jul 2015 AU
201612249 May 2016 AU
2014203592 May 2016 AU
201612412 Jun 2016 AU
2012224891 Jun 2016 AU
201613590 Jul 2016 AU
201613591 Jul 2016 AU
201613592 Jul 2016 AU
201613593 Jul 2016 AU
2016101949 Mar 2017 AU
2016101949 Mar 2017 AU
2017100215 Mar 2017 AU
2017100215 Mar 2017 AU
201712363 May 2017 AU
2016200299 Jul 2017 AU
2017200100 Jul 2017 AU
2017200763 Sep 2017 AU
2017203711 Jan 2018 AU
201810968 Mar 2018 AU
201810969 Mar 2018 AU
201810970 Mar 2018 AU
201810971 Mar 2018 AU
201810972 Mar 2018 AU
201810973 Mar 2018 AU
201810975 Mar 2018 AU
201810977 Mar 2018 AU
201810978 Mar 2018 AU
2014203837 Apr 2018 AU
201816419 Jan 2019 AU
2015226832 May 2019 AU
2019202512 Oct 2019 AU
201916408 Dec 2019 AU
201916409 Dec 2019 AU
2518348 Mar 2006 CA
2587994 Dec 2007 CA
2611822 May 2008 CA
2906348 Sep 2014 CA
2951956 Dec 2015 CA
165232 May 2016 CA
165233 May 2016 CA
167431 Feb 2017 CA
172872 Feb 2017 CA
172873 Feb 2017 CA
172874 Feb 2017 CA
101004173 Jul 2007 CN
204458347 Jul 2015 CN
204704111 Oct 2015 CN
204895032 Dec 2015 CN
205533234 Aug 2016 CN
205559279 Sep 2016 CN
205559287 Sep 2016 CN
106089711 Nov 2016 CN
205853818 Jan 2017 CN
106470856 Mar 2017 CN
106976376 Jul 2017 CN
206446406 Aug 2017 CN
109070688 Dec 2018 CN
305029216 Feb 2019 CN
305029216 Feb 2019 CN
305029217 Feb 2019 CN
305029218 Feb 2019 CN
305105066 Apr 2019 CN
110385958 Oct 2019 CN
110385958 Oct 2019 CN
305397384 Oct 2019 CN
9116338 Oct 1992 DE
10336767 Dec 2004 DE
202004017266 Apr 2006 DE
102007019078 Sep 2008 DE
102007038716 Feb 2009 DE
602005012194 Feb 2009 DE
102011102343 Nov 2012 DE
102010035406 Dec 2012 DE
102016220768 Apr 2018 DE
112017000915 Oct 2018 DE
102018203428 May 2019 DE
102019205194 Oct 2019 DE
102019205194 Oct 2019 DE
700801 Mar 1996 EP
1634740 Mar 2006 EP
1870270 Dec 2007 EP
1925889 May 2008 EP
1988612 Nov 2008 EP
2196390 Jun 2010 EP
2423019 Aug 2015 EP
3113965 Jan 2017 EP
3241695 Apr 2018 EP
005609252-0001 Oct 2018 EP
005609252-0002 Oct 2018 EP
005609252-0003 Oct 2018 EP
3411250 Dec 2018 EP
2005-146987 Jun 2005 JP
2005-147071 Jun 2005 JP
10-1718014 Mar 2017 KR
2014143181 Sep 2014 WO
2017143393 Aug 2017 WO
2017143394 Aug 2017 WO
2019038023 Feb 2019 WO
2019082168 May 2019 WO
2019097448 May 2019 WO
2019229706 Dec 2019 WO
Non-Patent Literature Citations (32)
Entry
Design U.S. Appl. No. 29/682,265 entitled “Air Conditioning Apparatus” filed Mar. 4, 2019.
Utility U.S. Appl. No. 16/722,938 entitled “Roof Top Air Conditioner Unit, Methods for Producing, Assembling and Installing the Roof Top Air Conditioner Unit and Vehicle with the Roof Top Air Conditioner Unit” filed Dec. 20, 2019.
Utility U.S. Appl. No. 16/384,376 entitled “Air Distribution Apparatus” filed Apr. 15, 2019.
Design U.S. Appl. No. 29/660,094 entitled “Air Distribution Box” filed Aug. 17, 2018.
Design U.S. Appl. No. 29/645,887 entitled “Mobile Air Conditioner” filed Apr. 30, 2018.
U.S. Appl. No. 62/819,711 entitled “Mobile Air Conditioner” filed Mar. 18, 2019.
Utility U.S. Appl. No. 16/744,584 entitled “Parking Cooler” filed Jan. 16, 2020.
Dometic Product Catalog, Climate Control, 2015.
Dometic Product Catalog, Climate Control, 2016.
Australian Patent Application No. 2017200186 entitled “Parking Cooler” filed Jan. 11, 2017.
Design U.S. Appl. No. 29/604,433 entitled “Air Conditioning Apparatus” filed May 17, 2017.
Design U.S. Appl. No. 29/620,394 entitled “Air Shroud Assembly” filed Oct. 4, 2017.
Design U.S. Appl. No. 29/677,547 entitled “Modular Air Gill” filed Jan. 22, 2019.
Design U.S. Appl. No. 29/594,476 entitled “Shroud Assembly” filed Feb. 17, 2017.
Australian Patent Application No. 201612249 entitled “Air-Conditioning Unit” filed Apr. 28, 2016.
U.S. Appl. No. 29/660,094, of Rickard, H., et al., filed Aug. 17, 2018.
AU Provisional Patent Application No. 2018901268, of Williamson, J., et al., filed Apr. 16, 2018.
AU Provisional Patent Application No. 2018901939, of Williamson, J., et al., filed May 31, 2018.
PCT Patent Application No. PCT/IB2019/054509, of Williamson, J., et al., filed May 31, 2019.
Notification to Grant Patent for Chinese Design Application No. 201830456867.7, dated Dec. 3, 2018.
Notification to Grant Patent for Chinese Design Application No. 201830456885.5 , dated Nov. 30, 2018.
International Search Report and Written Opinion for PCT Patent Application No. PCT/IB2019/054509 dated Aug. 26, 2019.
Notification to Grant Patent for Chinese Design Application No. 201830456864.3, dated Dec. 3, 2018.
Office Action for Germany Patent Application No. 102017214941.8 dated Nov. 29, 2019 (English Summary attached).
Notice of Allowance Issued for U.S. Appl. No. 29/660,094 dated Dec. 22, 2020.
“BIS4 ADB Air Distribution Box”, Retrieved From https://www.dometic.com/en-sg/sg/products/climate/air-conditioners/motorhome-and-caravan-air-conditioners/dometic-ibis4-adb-_-188839, Dec. 2, 2020, 6 Pages.
Restriction Requirement Issued for U.S. Appl. No. 29/660,094 dated Sep. 23, 2020.
CN Patent Application No. 201980036421 entitled “Air conditioner for a vehicle” filed on Nov. 30, 2020.
DE Patent Application No. 112019002266 entitled “Air conditioner for a vehicle” filed on Nov. 30, 2020.
Design U.S. Appl. No. 29/774,535 entitled “Air Distribution Box” filed Mar. 17, 2021.
Notice of Allowance in U.S. Appl. No. 29/660,094 dated Dec. 22, 2020.
Office Action Issued in German Application No. 112019002266 dated Jan. 25, 2022.
Related Publications (1)
Number Date Country
20190315197 A1 Oct 2019 US