1. Field of the Invention
This invention is related in general to the field of data management systems. In particular, the invention consists of a system for distributing air through a drive enclosure bay residing within one of multiple disparate data storage systems.
2. Description of the Prior Art
Data storage libraries are used for providing cost effective storage and retrieval of large quantities of data. In a data storage library, data is stored on data storage media that are, in turn, stored on storage shelves or on racks inside the library in a fashion that renders the media, and its resident data, accessible. Data storage media may comprise any type of media on which data may be stored, including but not limited to magnetic media (such as magnetic tape or disks), optical media (such as optical tap or disks), electronic media (such as PROM, EEPROM, flash PROM, Compactflash™, Smartmedia™ Memory Stick™, etc.), or other suitable media.
An exemplary data storage library may include a plurality of disparate components such as a power supply, a control module, an interconnect device, one or more communication devices, a blower module for removing heat, and one or more slots for receiving interchangeable components. These interchangeable components may include drive enclosure bays each containing multiple drive trays.
Each drive tray may, in turn, hold several data storage devices such as hard-disk drives, tape cartridges, optical-disk drives, or the like. These types of data storage devices traditionally operate by spinning a data storage media, such as a platter or disk, over a read/write head.
A primary concern for data storage systems is the displacement of heat generated by its components. To this end, the blower module usually includes a fan and, optionally, a refrigeration unit or cooler. The purpose of the fan may be to pull air into the data storage system in a manner that draws it over heated components, absorbing heat from these components, and discharging the heated air from the data storage unit. Alternatively, the fan may pull air into the data storage system, pass it over a cooler or refrigeration unit to lower its temperature, and then force it through and around heated system components. Either way, the cooling system requires that relatively cool air pass over, through, and around the heated components in sufficient quantities to remove an acceptable amount of heat from these components.
A primary source of heat in a traditional data storage system is the plurality of data storage devices placed on the drive trays of the drive enclosure bays. Accordingly, a traditional drive enclosure bay is designed to meet the needs of its attendant data storage system. For example, a drive enclosure bay designed for a first data storage system may provide a specific air-flow path entering the data storage system enclosure, over and around the drive trays containing data storage devices, through the blower, and exiting the blower module. Traditionally, a drive enclosure bay designed for a second data storage system may provide a much different air-flow path, as the design of its enclosure, power module, blower module, and other components may be different than that of the first data storage system. Another consideration may be the required air-flow impedance of each data storage system.
For these reason, drive enclosure bays are traditionally designed for a specific data storage system. However, this prevents a drive enclosure bay from being ported from one type of data storage system to another. This, in turn, reduces flexibility in the transferal of data storage devices from one system to another. Accordingly, it is desirable to have a system for distributing air through a drive enclosure bay wherein the drive enclosure bay may reside in one of a plurality of disparate data storage systems.
The invention disclosed herein employs a plurality of air-flow paths within a drive enclosure bay to allow the drive enclosure bay to function with multiple disparate data storage systems. Another aspect of the invention is the use of narrow and offset connectors to facilitate the flow of air through the drive enclosure bay. The drive tray includes a front side adapted to allow air to flow through the front side of the drive enclosure bay, a top side including an air outlet port, a bottom side including an air outlet port, and a rear side including a contoured stiffener adapted to allow air to flow through the rear side of the drive enclosure bay. Additional features include the use of PCB ports and drive tray slots in the drive tray and frame ports and PCB notches in interface cards within the drive enclosure bay.
Various other purposes and advantages of the invention will become clear from its description in the specification that follows and from the novel features particularly pointed out in the appended claims. Therefore, to the accomplishment of the objectives described above, this invention comprises the features hereinafter illustrated in the drawings, fully described in the detailed description of the preferred embodiments and particularly pointed out in the claims. However, such drawings and description disclose just a few of the various ways in which the invention may be practiced.
This invention is based on the idea of using a plurality of air-flow paths within a drive enclosure bay to allow the drive enclosure bay to function with multiple disparate data storage systems. Referring to figures, wherein like parts are designated with the same reference numerals and symbols,
The isometric view of
The isometric drawing of
One aspect of this invention is the requirement that the drive enclosure bay 24 provide sufficient air flow through the drive enclosure bay 24 into the housing 12 of whatever type of data storage library 10 it is inserted into. In a first configuration, as illustrated by the block diagram of
In a second configuration, as illustrated by the block diagram of
As previously indicated and illustrated in
An improved drive tray 140 is illustrated in the isometric view of
An improved interface card 144 is illustrated in the isometric drawing of
Those skilled in the art of making data storage systems may develop other embodiments of the present invention. However, the terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
5191544 | Benck et al. | Mar 1993 | A |
5673172 | Hastings et al. | Sep 1997 | A |
6317334 | Abruzzini et al. | Nov 2001 | B1 |
6473297 | Behl et al. | Oct 2002 | B1 |
6512678 | Sims et al. | Jan 2003 | B2 |
6532150 | Sivertsen et al. | Mar 2003 | B2 |
6781841 | Kim et al. | Aug 2004 | B2 |
6833995 | Hsue et al. | Dec 2004 | B1 |
6882525 | Paul et al. | Apr 2005 | B2 |
6975510 | Robbins et al. | Dec 2005 | B1 |
7113401 | Becker et al. | Sep 2006 | B2 |
7248471 | Wabiszczewicz | Jul 2007 | B2 |
20050122682 | Streit et al. | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070097621 A1 | May 2007 | US |