The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Now, additionally referring to
Air driven spindle assembly 18 includes a housing 26 and a housing 28 between which air turbine assembly 22 and components of air speed regulator 24 are positioned. Air driven spindle 18 additionally includes an inlet seal 30, a rotor nut 32, an upper rotor portion 34, a regulator plate 36, a valve 38, a lower rotor portion 40, bearing 42, a spring weir 44, an engagement pin 46, an o-ring 48, a spring retainer 50, a spring 52, a spring retainer 54, a regulator pin 56, an adjustment nut 58, a spindle 60, bearings 62, a spindle bearing nut 64, a bearing nut 66 and an end cap 68. Rotor nut 32 is threadingly engaged to spindle 60 holding upper rotor portion 54 in position. Upper rotor portion 34 includes an inclined annular surface 72 having a surface substantially similar to the annular angled or inclined surface of regulator plate 36. Annular angled surface 72 of upper rotor portion 34 is inclined at an angle to a rotational axis 76. Regulator plate 36 includes grooves 74 in which spheres 70 in the form of ball bearings 70 are placed. Grooves 74 have a portion 78 that is substantially parallel to axis 76 and a portion 80 that is substantially perpendicular or normal to axis 76.
As air driven spindle assembly is supplied air and comes up to speed, ball bearings 70 move along annular angled surface 72 yet are retained in grooves 74 and cause regulator plate 36 to move in a direction 82 for valve 38 to move to block a portion of the air coming through hole 84. Air that is supplied by way of air connection assembly 20 passes into the hollow center of spindle 60 also known as a shaft 60. And the air that escapes through hole 84 powers air turbine assembly 22 causing it to rotate. As valve 38 shuts off part of the airflow through hole 84 the speed decreases to thereby regulate the speed. Countering the centrifugal force that causes ball bearings 70 to move radially outward along inclined annular surface 72 is spring 52 that provides a biasing force to move regulator plate 36 and valve 38 away from hole 84 allowing a greater airflow therethrough. Spring 52 is retained in retainers 50 and 54 to uniformly provide a biasing force to regulator plate 36. Pin 56 extends through slotted hole 86 of spindle 60 against which spring retainer 54 rests. Adjustment nut 58 is threadingly engaged with spindle 60 and as adjustment nut 58 is positioned it causes pin 56 to be moved in an axial direction along axis 76. When adjustment nut 58 is moved towards spring 52 it increases the biasing force of spring 52 against regulator plate 36 this causes speed regulator assembly 24 to allow a higher speed for air turbine assembly 22. Adjustment nut 58 is positioned inside of housing 28 and engagement pin 46 is pressed in to engage a notch in adjustment nut 58 to hold it in position as air turbine assembly 22 is rotated by hand to allow for the adjustment of the speed by way of the adjusting of the biasing force on spring 52. Pin 56 moves in a machined channel in adjusting nut 58 as adjusting nut 58 is rotated relative to spindle 60, and adjusting nut 58 may have scalloped grooves to accommodate the diameter of pin 56 to thereby provide an indexing type function as adjustment nut 58 is rotated. Since pin 56 is located in grooved hole 86 the biasing force of spring 52 causes pin 56 to be settled along the internal surface of adjusting nut 58 having the scalloped surface to accommodate the diameter of pin 56 and to act as a detented adjustment.
As ball bearings 70 are held in groove 74 by the biasing force of spring 52, when spindle assembly 18 is not operating, bearings 70 are moved in a direction opposite direction 82 with ball bearing 70 being positioned along surface 78. As the speed of spindle assembly 18 increases ball bearings 70 move along annular inclined or angled surface 72 of upper rotor portion 34 and come into contact with surface 80 of regulator plate 36. By thus moving to overcome the biasing force of spring 52 valve 38 is adjusted relative to hole 84 thereby controlling the airflow that passes through the turbine section to thereby regulate the rotational speed of the spindle assembly. The location of ball bearings 70 is radially farther away from axis 76 as the speed is increased.
Adjusting nut 58 may have a groove to accommodate the insertion of pin 56 therein and an annular groove for the rotation of adjustment nut 58 about pin 56. Multiple notches around the outside of adjustment 58 may be included to rapidly allow pin 46 to engage one of the notches around adjustable nut 58 to hold nut 58 so that it cannot rotate as the spindle assembly, which has a portion extending out of housing 28 that is turned by the user so that the user can easily feel the detented positions as pin 56 moves over scallops in nut 58.
An advantage of the present invention is that it is easily adjustable having the regulating system entirely internal so that the spindle assembly itself regulating the speed of the spindle rather than requiring an external regulating device.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | |
---|---|---|---|
60829922 | Oct 2006 | US |