The invention relates to an air induction system for an engine and more particularly provides a new and improved duct assembly for accommodating relative movement between the engine and the air filter and for attenuating engine noise.
Motor vehicle internal combustion engines use a throttle body to govern the engine power settings. Some engines have additional charging equipment including turbo and supercharger mechanisms that compress intake air upstream of the throttle body to enhance engine performance. All internal combustion engines must receive a constant supply of clean air in order to enable the combustion of the fuel. The engine induction system is located upstream of the engine air intake and its primary functions are air filtration and noise attenuation.
The induction system begins with an inlet duct which draws cool dry air into the system. The inlet duct will deliver the air into an air filter housing that has an internal filter to capture incoming particulates to protect the engine. The air filter housing will also typically have a mass air flow meter port and a sensor downstream of the filter, to meter the air for combustion. The outlet duct will be connected between the air filter housing and the engine air intake. The air filter housing can be mounted to the engine or on the vehicle body structure. If mounted on the body structure, the duct will need a compliant feature such as a flexible bellows to decouple normal engine motion from the body mounted air filter housing. The induction system provides a pathway to deliver filtered dry cool air to the engine.
Air induction systems must also attenuate acoustic noise that is produced from the engine. Vehicles must comply with Federal regulations limiting vehicle pass-by noise. The engine will release noise from the throttle body that has harmonic components that are orders of engine speed. It may also contain higher frequency content that is produced from high RPM components like turbos and superchargers. Inductions systems will use the air filter housing size, geometry, and high and low frequency tuners to meet defined sub-system performance noise targets.
Vehicle emission standards have been mandated by the Federal government. Some engines use a strategically placed hydrocarbon adsorber in the induction system to catch hydrocarbons that are leaking from parked engines. The hydrocarbon adsorber uses carbon or other materials to capture the hydrocarbons before they escape the induction system and enter the environment. The adsorber is typically packaged on the clean filtered side of the induction system and has some exposed surface area adjacent to incoming air flow streams. This exposure allows the hydrocarbons to be captured upon engine shutdown and then be stripped from the adsorber material when the engine is running.
Induction system pressure loss is very important to develop peak engine power. Internal air flow within a duct will add incremental restriction if the area is constricted or if the boundary condition is irregular or coarse. Studies have shown that internal air flow within the bellows region of the duct assembly develops a higher restriction than flow through a smooth tube.
The clean air duct must fit within the distance between the air filter housing and the engine air inlet. Some applications can present a very short duct length due to the close proximity of the engine inlet and air filter housing. Incorporation of a high frequency tuner will reduce the available length for the bellows. The shorter length will eliminate convolutes increasing the stress per convolute reducing the durability life of the duct. Applications with short longitudinal lengths where length is consumed by bellows and tuner limit hydrocarbon filter space. It would be desirable to provide a new and improved air duct assembly for efficiently communicating air from the air filter housing to the engine air intake in a limited packaging space.
An air duct assembly supplies air from an air cleaner housing to an engine throttle and includes a first duct connected to the air cleaner housing and a second duct connected to the engine air intake. Open ends of the first and second ducts are spaced from one another and the second duct has a flared bell mouth at its open end. The second duct includes a sleeve that defines an attenuation chamber. A flexible bellows overlies the first and second ducts and the sleeve, and extends across the space between the first and second ducts to provide an airtight connection therebetween and flex during relative motion between the air cleaner housing and the engine air intake. A hydrocarbon adsorbing material can be housed within the attenuation chamber.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of certain exemplary embodiments is exemplary in nature and is not intended to limit the invention, its application, or uses.
Referring to
As seen in
The second duct 66 includes a sleeve 78 that creates an annular sound attenuation chamber 80. The sleeve 78 includes a concentric wall 82, and end walls 84 and 86. The end walls 84 and 86 extend radially inward from the concentric wall 82 and are suitably attached to the duct wall 68. As seen in
The first duct 58 and the second duct 66 are connected together by a flexible bellows 90. The flexible bellows 90 is radially outboard of the second duct 66 and its sleeve 78 and the attenuation chamber 80. As seen in
In operation, the engine air intake will draw air through the duct assembly 56 and through the air filter housing 14. The air flows through the air flow passage 61 of the first duct 58 and then across the space between the first duct 58, and into the second duct 66. The space between the ends of the ducts 58 and 66 will permit the two ducts 58 and 66 to move relative to one another during movement of the engine. The bell mouth 72 will smooth the air flow across the space between the ends of the ducts 58 and 66 and smooth the intake of the air flow into the open end 70 of the duct 66. The bellows 90 is flexible and can yield as needed to accommodate the relative movement between the first duct 58 and the second duct 66. Engine noise that is emanating through the duct 66 in the form of high frequency air vibrations can be attenuated by escaping through the openings 76 into the attenuation chamber 80.
Thus, as shown in
Referring to
As seen in
During normal operation of the engine, sound will be attenuated by the communication of airflow perturbations into the attenuating chamber 218. Upon shutdown of the engine, it is known that some of the hydrocarbon combustion products will leak back through the throttle body or turbocharger and into the duct 166. These hydrocarbons will be exposed to the hydrocarbon adsorbing material 214 residing in the chambers 216 and 220 and will be adsorbed. Later, upon restarting of the engine, the hydrocarbons will be released from the hydrocarbon adsorbing material and flow back into the engine where these polluting products can be re-combusted and then processed through the engines pollution control system.
The foregoing drawings and description disclose typical embodiments of the invention. A person of ordinary skill in the art may make modifications within the scope of the invention. For example, in
Thus, the invention offers a method to longitudinally consolidate an induction clean air duct bellows and a high frequency tuner. Today, these components are packaged in series along the duct. This arrangement will axially consolidate these parts and provide a flow liner within the bellows. This feature will reduce internal flow restriction by improving the boundary shape. Alternatively, all or part of the high frequency tuner cavity can also be used to package a hydrocarbon adsorbing material. The cavity for the hydrocarbon adsorbing material is well positioned to capture the hydrocarbons and also have an interior surface adjacent to the flow field to regenerate the adsorbing material.
Number | Name | Date | Kind |
---|---|---|---|
3427051 | White et al. | Feb 1969 | A |
3574358 | Cassel | Apr 1971 | A |
3669470 | Deurloo | Jun 1972 | A |
3799223 | Feneziani | Mar 1974 | A |
3889985 | Gartmann | Jun 1975 | A |
4030740 | Kniss et al. | Jun 1977 | A |
4371198 | Martin | Feb 1983 | A |
5129685 | Engel | Jul 1992 | A |
5188086 | Adkins et al. | Feb 1993 | A |
5571242 | Demorest | Nov 1996 | A |
5603531 | Maier | Feb 1997 | A |
5746453 | Roberts | May 1998 | A |
5882046 | Thomas | Mar 1999 | A |
6131960 | McHughs | Oct 2000 | A |
6481764 | Kwok | Nov 2002 | B1 |
6983957 | Bettinger | Jan 2006 | B2 |
7168417 | Arruda et al. | Jan 2007 | B2 |
7458366 | Luley et al. | Dec 2008 | B2 |
7610904 | Treier et al. | Nov 2009 | B2 |
20080264719 | Seko et al. | Oct 2008 | A1 |
20100089368 | Hirata et al. | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20120222641 A1 | Sep 2012 | US |