The present invention relates to an air-conditioning duct for distributing air, comprising
Known air conditioning ducts for distributing air, which are made of a woven or non-woven fabric and which are also referred to as textile ducting outlets, typically consist of a material sewn together so as to form a closed shape having a specific cross section (ducting elements). The wall of a duct may be perforated or provided with through holes, the air distribution taking place through such perforation or holes. Distributing air in a proper manner is one of the most important functions of an air conditioning distribution system.
In certain cases, it is required that the direction of the distributed air flow is selectable between the downward one and the upward one, i.e. towards a ceiling, without necessitating the adjustment of the respective ducting element to be too complex. For this purpose, a ducting outlet combining two outlet types into one has been developed (
Furthermore, air-conditioning ducts having their longitudinal axes oriented in the vertical direction are known. In certain cases, the operation of such ducts is connected with requirements for getting the direction of the outlet air flow by means of a regulating membrane.
Moreover, known ducting elements are occasionally required to be temporarily fully closable. For example, various mechanisms made of metal materials and installed at the inlet end of the duct are used for this purpose. The material of such mechanisms causes a considerable increase in the overall weight on the one hand, and does not enable such closing mechanisms to be machine washed.
A shifting element according to the prior art substantially follows one half of the circumference of the cross section of the duct which means that it usually has a semi-circular shape. Thus, shifting of the element from one position to the other is carried out by turning the same by 180°. The drawbacks of the aforesaid technical solution consist in that the shifting action takes a relatively long time during which the membrane is subject to the highest strains (waving motion in an air flow) so that it becomes prone to be damaged. Moreover, a driving motor for turning the above mentioned element by 180° is relatively heavy, thus increasing the overall structural weight of the air-conditioning duct.
The above mentioned drawbacks of the prior art are eliminated by the air-conditioning duct having the features as defined in claim 1.
The drawbacks of the prior art are also eliminated by an air-conditioning duct for conveying and/or distributing air, comprising
The shifting element for shifting the regulating membrane to the first portion or second portion of the peripheral wall of the duct is arranged inside the air-conditioning duct in a manner allowing the same to be turned preferably at an angle ranging between 70 and 120°, more preferably at an angle ranging between 80 and 110°, most preferably at an angle of 90°.
According to a preferred embodiment, the shifting element has a shape corresponding to one half of the circumference of an oblique section through the air-conditioning duct, said section extending along a plane forming an angle, which is equal to one half of the turning angle of the shifting element, with the longitudinal axis of the duct.
Furthermore, the above mentioned drawbacks of the prior art are also eliminated by an air-conditioning duct for conveying and/or distributing air, comprising
Preferably, the attachment line between the regulating membrane and the interior partition corresponds to the line between the impervious area and the pervious area.
According to a specific preferred embodiment the first portion of the peripheral wall is pervious and/or provided with a perforation and/or with through holes and when the regulating membrane overlaps the first portion of the peripheral wall, it also overlaps the impervious area of the interior partition. Such a duct preferably comprises also an outer jacket that surrounds the peripheral wall of at least a part of the duct, while being spaced apart from said peripheral wall, thus forming a chamber into which the holes of the first portion of the peripheral wall open, the outer jacket being provided with holes for distributing air into the surroundings. Such a duct may also comprise an end wall that is attached to the end of the duct facing away from the inlet end, the end wall extending along the interior partition spaced apart therefrom and being pervious and/or perforated and/or provided with through holes. Further, such a duct may preferably comprise a funnel-shaped wall having its narrower end attached to the peripheral wall and its wider end attached to the end wall and/or to the outer jacket, the funnel-shaped wall dividing the space extending between the outer jacket and the peripheral wall of the duct into a first partial space, into which the holes of the first portion of the peripheral wall open, and a second partial space, into which the air outlet for the air passing through the pervious area of the interior partition opens.
In some cases it may be also advantageous to make the regulating membrane such that it further comprises a transverse portion having a shape that corresponds to one half of the inside cross section of the duct, the regulating membrane being attached to the interior partition, particularly to the impervious area thereof, by means of said transverse portion.
It may be also advantageous, especially when the membrane is used for closing the duct, to make the duct at least partially, gradually widened, especially funnelled, namely in the area of the shifting element and in the adjoining areas.
For more detail, the present invention will be further described with reference to exemplary embodiments and accompanying drawings.
An example of a prior art air-conditioning duct comprising air impermeable regulating membrane 1 is shown in
The wall of such duct comprises a first portion 5 surrounding a first cross-sectional area of the air-conditioning duct and a second portion 6 surrounding a second cross-sectional area of the air-conditioning duct, the parting plane between the first portion 5 and the second portion 6 extending along the longitudinal direction of the duct, preferably along the longitudinal centre line of the same. Hereinafter, the latter plane is referred to as flip plane. The aforesaid air-conditioning duct comprises an impervious regulating membrane 1 attached to the mutually opposite inner walls of the duct, each attachment line extending along the flip plane, namely along the transition line between the first portion 5 and the second portion 6.
The regulating membrane 1 is provided with a shifting device 40 (not shown in
The first exemplary embodiment of the present invention is described with reference to
The duct comprises a transverse interior partition arranged therein, the partition having an impervious area 17 and a pervious area 18 allowing air to flow through it, the transition line between the impervious area 17 and the pervious area 18 of the interior partition extending substantially through the flip plane mentioned above.
In this exemplary embodiment, the pervious area 18 of the interior partition is provided with through holes 19. Another alternative, however, consists in providing a duct having an interior partition, which comprises merely the impervious area 17, while the remaining part of the inside cross section of such a duct remains entirely free; in other words, it is possible to create an impervious interior partition that protrudes merely into a certain part of the inside cross section of the duct, the remaining part of that cross section being left free. Alternatively, the pervious area 18 can be created from a pervious or perforated fabric or from a perforated foil.
The duct also comprises a regulating membrane arranged inside the same, said membrane consisting of a longitudinal portion 21 and a transverse portion 22.
The longitudinal portion 21 of the regulating membrane is sewed into the duct so that it substantially extends along the borders between the first portion 15 and the second portion 16 of the peripheral wall of the duct or along the lines defining the intersection between the above mentioned flip plane and the peripheral wall. In this exemplary embodiment, the longitudinal portion 21 of the regulating membrane is rectangular in shape and can be selectively shifted to, or preferably pushed against the first portion 15 or the second portion 16 of the peripheral wall when being subject to the action of flowing air.
In the vicinity of the inlet end of the duct, the longitudinal portion 21 is secured to a shifting element 42 of a shifting device 40 for shifting the regulating membrane to the first portion 15 or the second portion 16 of the peripheral wall.
The opposite end of the longitudinal portion 21 is connected to the transverse portion 22 of the regulating membrane, the transverse portion 22 having a shape that substantially corresponds to that of the impervious area 17 and/or to that of the pervious area 18 of the interior partition. Simultaneously, the transverse portion 22 of the regulating membrane is attached to/stitched on the interior partition along the transition line between the impervious area 17 and the pervious area 18 of the same.
In other words, the regulating membrane forms an interior wall inside the duct, the longitudinal portion 21 of said interior wall being adapted for adjoining the first portion 15 or the second portion 16 of the peripheral wall in a selective manner and the transverse portion 22 of said interior wall being adapted for adjoining the impervious area 17 or the pervious area 18.
In this exemplary embodiment, the first portion 15 of the peripheral wall is impervious, while the second portion 16 of the same is permeable or provided with perforation or with through holes or, as the case may be, with a combination thereof (not shown).
This exemplary embodiment works in the following manner:
After the regulating membrane has been shifted into the position shown in
After the regulating membrane has been shifted into the opposite position shown in
Alternatively, the second portion 16 of the peripheral wall can be impervious, as well.
In such case, the duct assuming the position shown in
The aforesaid two alternatives are particularly advantageous when incorporated in branched air-conditioning ducts where they serve for closing and opening (enabling) the individual branches of such a duct in a selective manner. For example, an air-conditioning distribution system can comprise a main (backbone) duct and several branch ducts extending from the former, the inlet of at least one of the branch ducts being provided with an interior partition and a regulating membrane according to the embodiment described above, the length of the longitudinal portion 21 of the latter approximately corresponding to the internal diameter of the given branch duct. More generally, the length of the longitudinal portion of the membrane ranges between 0.7 and 2.5-fold of the internal diameter of the branch duct.
According to another alternative embodiment, both the first portion 15 and the second portion 16 are made pervious to air, whether by means of through holes or perforations, or owing to a pervious nature of the fabric used. In such case, the duct serves for conveying and distributing air when assuming the position shown in
According to yet another alternative embodiment, the first portion 15 of the peripheral wall of the duct is pervious while the second portion 16 of the same is impervious to air. When the duct assumes the position shown in
The second exemplary embodiment of the duct comprising a regulating membrane according to the present invention is shown in
Again, this embodiment applies to a duct comprising a peripheral wall, a ducting outlet and an interior partition, the first portion 15 of the peripheral wall being adjoined by the impervious area 17 of the interior partition and the second portion 16 of the peripheral wall being adjoined by the pervious area 18 of the partition. Again, the regulating membrane is secured inside the mutually opposite areas of the peripheral wall and extends along the corresponding flip plane, one end of the regulating membrane being attached to the shifting device 40 and the other end of the same being provided with the transverse portion 22, the latter being attached to the interior partition along the flip plane.
In addition, the end portion of the duct is provided with an outer jacket 30 that surrounds the peripheral wall of the duct spaced apart from the same, said outer jacket extending beyond the end area of the surrounded peripheral wall, and with an outer end wall 31 that is spaced from the interior partition 22 and closes the outer jacket 30. The portion of the peripheral wall of the duct, which is arranged downstream the interior partition, widens in a funnel-like manner and has its largest cross section attached to the outer jacket 30 and/or to the end wall 31.
The outer jacket 30, which is made of a woven or non-woven fabric or of a foil, is provided with an array of through holes and/or perforation and/or it can be made of a pervious fabric. Likewise, the end wall 31, which is also made of a woven or non-woven fabric or of a foil and which is also pervious to air, is provided with an array of through holes and/or perforations and/or made of a pervious fabric.
The first portion 15 of the peripheral wall of the duct, which is adjoined by the impervious area 17, is provided with an array of holes 12, while the second portion 16 of the peripheral wall of the duct remains impervious.
The second embodiment of the invention works in the following manner:
The duct is supplied with air fed from above. When assuming the position shown in
Shifting the regulating membrane into the opposite position (to the right, as shown in the drawing) causes the holes 12 of the peripheral wall to become exposed and the holes 19 of the transverse partition to be covered up. The air flow, which is supplied to the duct, exists the same in a lateral direction entering the space between the peripheral wall and the outer jacket 30; therefrom, the air flow is distributed through the holes 33 of the outer jacket 30 in multiple lateral directions.
In an alternative embodiment, the end wall 31 is omitted and the outer jacket is terminated by a radial wall at the level of the partition, the radial wall interconnecting the outer jacket with the peripheral wall of the duct. When the regulating membrane assumes the position shown in
In another alternative embodiment, which is shown in
Preferably, the end positions of the shifting element 42 delimit a surface area which is equal to or slightly greater than that of the cross section of the peripheral wall of the duct in the given point in order to cause the regulating membrane to tightly adjoin the respective portion 15, 16 of the peripheral wall of the duct. Preferably, the carrying annular element 43 delimits a surface area which is smaller than that delimited by the end positions of the shifting element 42. In this particular exemplary embodiment, the radius of the semi-circular hoop exceeds that of the carrying annular element 43.
It is a matter of course that another type of the shifting device 40 can be also used, such as a manually operated shifting device 40 as indicated in
The position, in which the shifting device 40 is installed, shall cause the rotational axis thereof to lie in the flip plane, i.e. in that plane which at least partially includes the attachment lines between the regulating membrane and the peripheral wall.
Theoretically, a duct having a square cross section can be provided, in which duct the respective regulating membrane would be shiftable without any pivoting action of a reinforcing hoop under the condition that the regulating membrane is attached to the duct in diagonally opposite corners and that, e.g., a clamping linkage is used, the latter having its inlet end attached to the midpoint of the end face of the longitudinal portion 21 of the regulating membrane. The shifting movement of the regulating membrane is derived from a simple translational movement of the clamping mechanism along a diagonal path between the corner positions of the same. Thereby, the regulating membrane can be shifted to the respective portion of the peripheral wall (or portions of a pair of peripheral walls) in a relatively tight manner.
In a further alternative embodiment, which is shown in
In another embodiment, which is shown in
Thus, the shifting element 42 has a shape corresponding to one half of the circumference of an ellipse when it forms a part of an air-conditioning duct having a circular cross-section. In case of an air-conditioning duct having a rectangular cross-section, the shifting element 42 has a shape corresponding to one half of the circumference of a rectangle.
The shifting device can comprise a manually operated actuator or a servomotor (not shown) enabling the shifting action to be carried out in a motorized manner.
In general, the shifting element 42 according to the exemplary embodiments shown in
This implies that the shifting element 42 should have a shape corresponding to one half of the circumference of an oblique section through the air-conditioning duct, said section extending along a plane forming an angle, which is equal to one half of the turning angle of the shifting element, with the longitudinal axis of the duct, said turning angle being that between the end positions of the shifting element.
Ducts according to the embodiment shown in
The duct comprises a transverse interior partition arranged therein, the partition having an impervious area 17 and a pervious area 18 allowing air to flow through it, the transition line between the impervious area 17 and the pervious area 18 of the interior partition extending substantially through the flip plane mentioned above.
In this exemplary embodiment, the pervious area 18 of the interior partition is provided with through holes. Nevertheless, it is possible to provide an interior partition, which comprises merely the impervious area 17, while the remaining part of the inside cross section of the corresponding duct remains entirely free. In other words, it is possible to create an impervious interior partition that protrudes merely into a certain part of the inside cross section of the duct, the remaining part of that cross section being left free. Alternatively, the pervious area 18 can be created from a pervious or perforated fabric or from a perforated foil.
The duct also comprises a regulating membrane arranged inside the same, said membrane consisting of a longitudinal portion 21 and a transverse portion 22.
The longitudinal portion 21 of the regulating membrane is sewed into the duct along the borders between the first portion 15 and the second portion 16 of the peripheral wall of the duct or along the lines defining the intersection between the above mentioned flip plane and the peripheral wall. In this exemplary embodiment, the longitudinal portion 21 of the regulating membrane is rectangular in shape and can be selectively shifted to, or preferably pushed against the first portion 15 (
In the vicinity of the inlet end of the duct, the longitudinal portion 21 is attached to the shifting element 42 for shifting the regulating membrane to the first portion 15 or the second portion 16 of the peripheral wall.
The opposite end of the longitudinal portion 21 is connected to the transverse portion 22 of the regulating membrane, the transverse portion 22 having a shape that substantially corresponds to that of the impervious area 17 and/or to that of the pervious area 18 of the interior partition. Simultaneously, the transverse portion 22 of the regulating membrane is attached to/stitched on the interior partition along the transition between the impervious area 17 and the pervious area 18 of the same.
In other words, the regulating membrane forms an interior wall inside the duct, the longitudinal portion 21 of said interior wall being adapted for adjoining the first portion 15 or the second portion 16 of the peripheral wall in a selective manner and the transverse portion 22 of said interior wall being adapted, contrarily to the longitudinal one, for adjoining the impervious area 17 or the pervious area 18.
In addition, the end portion of the duct is provided with an outer jacket 30 that surrounds the peripheral wall of the duct without being in contact with the same, said outer jacket extending beyond the end area of the surrounded peripheral wall, and with an outer end wall 31 that is spaced from the interior partition 22 and encloses the outer jacket 30.
Furthermore, the space between the peripheral wall of the duct and the outer jacket 30 is divided into two partial rooms by a funnel-shaped wall 35 having its narrower end attached to the peripheral wall of the duct and its wider end attached to the outer jacket 30 and/or to the outer end wall 31.
The outer jacket 30, which is made of a woven or non-woven fabric or of a foil, is provided with an array of through holes and/or perforations; and/or it can be made of a pervious fabric. Likewise, the end wall 31, which is also made of a woven or non-woven fabric or of a foil and which is also pervious to air, is provided with an array of through holes and/or perforations and/or made of a pervious fabric.
The area of the first portion 15 of the peripheral wall of the duct, where said first portion immediately adjoins the outer jacket 30, is provided with an array of holes, while the area, where the same is separated from the outer jacket by the funnel-shaped wall 35, on the one hand, and adjoined by the impervious area 17 of the interior partition, on the other hand, is impermeable. The area of the second portion 16 of the peripheral wall of the duct, where said second portion immediately adjoins the outer jacket 30, is impermeable, while the area, where the same is separated from the outer jacket 30, is pervious to air or provided with through holes.
The present embodiment of the invention works in the following manner:
The duct is supplied with air fed from above. When assuming the position shown in
Shifting the regulating membrane 1 into the opposite position shown in
In an alternative embodiment, the end wall 31 is omitted and the outer jacket is terminated by a radial wall in the level of the partition, the radial wall interconnecting the outer jacket with the peripheral wall of the duct. When the regulating membrane assumes the position shown in
In another embodiment, which is an alternative to that shown in
All the above exemplary embodiments of the invention provide a regulating membrane that comprises a longitudinal portion 21 having a rectangular cross section, the surface area of said cross section substantially corresponding to one half of the cross-sectional surface area of the duct, and a transverse portion 22 having a shape that substantially corresponds to one half of the inside cross section of the duct. Nevertheless, a regulating membrane comprising merely a longitudinal portion 21 is also conceivable, wherein said longitudinal portion has a width, which substantially corresponds to one half of the circumference of the inside cross section of the duct. The end of said longitudinal portion, which faces away from the inlet of the duct, forms pleats and is stitched to the interior partition in the area of said pleats, the individual stitches being arranged along a line forming an extension of the attachment line between the regulating membrane and the peripheral wall/walls of the duct. Alternatively, the regulating membrane comprising merely the longitudinal portion 21 can have a width which is equal to that of the cross section of the duct in the area, where the regulating membrane is attached to the interior partition; nevertheless, this width gradually increases towards the inlet end of the duct and becomes substantially equal to one half of the circumference of the inside cross section of the duct in the area where the regulating membrane is attached to the shifting device.
It is obviously advantageous when the connections between the regulating membrane and the peripheral wall of the duct, between the regulating membrane and the interior partition, as well as between the impervious area of the interior partition and the peripheral wall of the duct, or, as the case may be, between the longitudinal and transverse portions 21, 22 of the regulating membrane are impervious, which can be achieved by means of various sewing or gluing techniques, such techniques being generally known in the art.
The impervious area of the duct according to the invention can be made, for example, of a woven fabric consisting of endless fibres and provided with a bonding coat, particularly with a PU, PVC or silicone coat. The application of such a bonding coat will also enable to obtain the desired impervious properties of the joints between the individual portions.
The position, in which the shifting device is installed, causes the rotational axis of the shifting element 42 to lie in the flip plane, i.e. in that plane which at least partially includes the attachment lines between the regulating membrane and the peripheral wall.
Preferably, the regulating membrane is secured to the shifting element 42 in a detachable manner. For example, the end portion of the regulating membrane can be provided with a narrow channel through which the shifting element 42 can be inserted. In order to avoid the necessity of disconnecting the shifting element 42 from the remainder of the shifting device when the shifting element is to be inserted through the narrow channel, the narrow channel can be provided with hook-and-loop closures (e.g., Velcro®) so that the regulating membrane can surround the shifting element 42 after having been attached thereto, the connection between the regulating membrane and the shifting element being fastened by said hook-and-loop closures.
Even though all the above embodiments relate to a duct having a circular cross section, it is obvious that the present invention can likewise apply to ducts having different cross-sectional shapes, such as square, rectangular, oval ones or the like. Generally, the only prerequisite consists in that the first portion 15 and the second portion 16 of the peripheral wall of the duct are mutually mirror-symmetric along the respective flip plane, such symmetry being maintained at least in an area adjoining the shifting element 42 where the latter assumes its end positions. Though advantageous, such mirror symmetry does not necessarily need to be maintained in a greater distance from the shifting device.
The air-conditioning duct comprises funnel-like widened portions arranged in the area, where the shifting element is mounted, and in the respective adjacent areas, the widest cross-section of the air-conditioning duct being situated exactly in said mounting area of the shifting element or in an area where the shifting element 42 assumes one of its end positions. Again, the shape of the shifting element 42 corresponds to that of one half of the circumference of an oblique section through the duct, particularly to that of a section extending along a plane in which the rotational axis of the shifting element 42 lies.
Preferably, the widened cross section of the duct is arranged in an area corresponding to the first portion 15 of the peripheral wall of the duct or, as the case may be, in an area where the regulating membrane adjoins the peripheral wall of the duct when the latter is in an open state.
The regulating membrane has its end, which faces towards the inlet end of the duct, attached to the shifting element 42. According to the embodiment shown in the drawing, the regulating membrane is attached to the wall of the duct along the line 10 and shifted to the first portion 15 of that wall. In this embodiment, the supporting element 7, which is also attached to the wall of the duct along the line 10, is formed by a supporting wire gauze. When the regulating membrane or either end thereof is shifted to the second portion 16 of the peripheral wall of the duct, the supporting element is able to support the regulating membrane, thus preventing the latter to be damaged by the air pressure.
After shifting the shifting element 42 along with the related end of the regulating membrane to the second portion 16 of the peripheral wall of the duct, the air flow is prevented from passing through the duct which means that the latter is closed. After shifting the shifting element 42 along with the regulating membrane to the first portion 15 of the peripheral wall of the duct, the air flow is enabled to pass through the open duct into downstream ducting assemblies.
An advantage of the present embodiment consists in that the duct can be closed by means of the regulating membrane in a manner which ensures that neither said regulating membrane nor another partial obstruction unacceptably restricts the cross section of the duct and the air flow after the duct has been opened. If the duct were not provided with a widened portion arranged in the given area, the pressure of air entrapped between the first portion 15 of the wall of the duct and the regulating membrane could cause the regulating membrane to bulge out into the inner space of the duct and to locally restrict the free cross section of the latter which would subsequently reduce the pressure acting in the downstream ducting branches.
According to the embodiment of the shifting device with the oblique shifting element 42 shown in
The preferred embodiments described above apply to air-conditioning ducts made of a woven or non-woven fabric or of a foil, i.e., of a washable material. Nevertheless, a combination comprising a regulating membrane made of an impervious fabric or foil and an interior partition may be also used for ducts having their peripheral wall made of a sheet metal or, as the case may be, of another inflexible material.
Although multiple exemplary embodiments are described above, it is obvious that those skilled in the art would easily appreciate further possible alternatives to those embodiments. Hence, the scope of the present invention is not limited by the above exemplary embodiments and is rather defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
PV 2015-164 | Mar 2015 | CZ | national |
PV 2015-470 | Jul 2015 | CZ | national |
This application is a Section 371 national phase application of International Application No. PCT/CZ2016/000025, filed on Mar. 8, 2016, which claims priority to Czech Republic Application Nos. PV 2015-470, filed on Jul. 7, 2015, and PV 2015-164, filed on Mar. 9, 2015, the disclosures of which are incorporated by reference herein in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CZ2016/000025 | 3/8/2016 | WO | 00 |