The present invention relates to control systems for internal combustion engines, and more particularly to systems and methods for detecting steady state and transient conditions of a cam phaser that are used for estimating air.
Various methods exist for estimating the air in an internal combustion engine. One conventional method uses measurements from a mass airflow sensor to estimate an air value. Another conventional method uses speed density calculations to estimate the value.
The first method is shown to be inaccurate during movement of cam phasers coupled to intake and exhaust camshafts of the engine. The second method provides more accurate estimation during transient operating conditions of the cam phasers. Conventional methods of estimating air lack the ability to detect a transient operating condition or a steady state operating condition of the cam phasers and lack the ability to apply the proper air estimation method during the transient operating condition.
An air dynamic steady state detection system for movement of a cam phaser of an internal combustion engine according to the present invention includes a cam position sensing device and a control module. The cam position sensing device generates a position signal based on a position of the cam phaser of the engine. The control module receives the position signal and applies first and second filters to the position signal to select either a transient or steady state condition. The control module also calculates an estimated air value based on the selection of the transient or steady state condition.
In other features, the air dynamic steady state detection system includes a second cam position sensing device. The second cam position sensing device generates a second position signal of a second cam phaser of the engine. The cam phaser is coupled to an intake cam shaft of the engine and the second cam phaser coupled to an exhaust camshaft of the engine. The control module applies third and fourth filters to the second position signal and selects either a steady state or transient condition based on a difference between the first and second filters and a difference between the third and fourth filters.
In still other features, the control module calculates an estimated air value based on a speed density calculation when the control module determines the transient condition. When the control module determines the steady state condition, the control module calculates an estimated air value based on a mass airflow sensor signal and an engine speed. The control module controls a fuel injector of the engine based on the estimated air value.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify the same elements. As used herein, the term module refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.
Referring to
A fuel injector (not shown) injects fuel which is combined with the air as it is drawn into the cylinder 18 through an intake port. The fuel injector may be an injector associated with an electronic or mechanical fuel injection system 20, a jet or port of a carburetor or another system for mixing fuel with intake air. The fuel injector is controlled to provide a desired air-to-fuel (A/F) ratio within each cylinder 18.
An intake valve 22 selectively opens and closes to enable the air/fuel mixture to enter the cylinder 18. The intake valve position is regulated by an intake camshaft 24. A piston (not shown) compresses the air/fuel mixture within the cylinder 18. A spark plug 26 initiates combustion of the air/fuel mixture, driving the piston in the cylinder 18. The piston drives a crankshaft (not shown) to produce drive torque. Combustion exhaust within the cylinder 18 is forced out an exhaust port when an exhaust valve 28 is in an open position. The exhaust valve position is regulated by an exhaust camshaft 30. The exhaust is treated in an exhaust system. Although single intake and exhaust valves 22,28 are illustrated, it can be appreciated that the engine 12 can include multiple intake and exhaust valves 22,28 per cylinder 18.
The engine system 10 can include an intake cam phaser 32 and an exhaust cam phaser 34 that respectively regulate the rotational timing of the intake and exhaust camshafts 24,30. More specifically, the timing or phase angle of the respective intake and exhaust camshafts 24,30 can be retarded or advanced with respect to each other or with respect to a location of the piston within the cylinder 18 or crankshaft position. In this manner, the position of the intake and exhaust valves 22,28 can be regulated with respect to each other or with respect to a location of the piston within the cylinder 18. By regulating the position of the intake valve 22 and the exhaust valve 28, the quantity of air/fuel mixture ingested into the cylinder 18 and therefore the engine torque is regulated.
A control module 40 detects transient and steady state operating conditions of the cam phasers 32, 34 and calculates an estimated air value 62 according to the present invention. Referring now to
Referring to
In step 130, if the absolute value of the intake position difference is greater than or equal to a first selectable threshold or the absolute value of the exhaust position difference is greater than or equal to a second selectable threshold, transient operating conditions are determined and a transient flag is set to TRUE. In step 130, if the absolute value of the intake position difference is less than the first selectable threshold or the absolute value of the exhaust position difference is less than the second selectable threshold, a steady state operating condition is determined and a steady state flag is set to TRUE. In an alternative embodiment, a variable size offset (truncation) can be applied to the differences to allow for the fact that the cam phasers can move some distance from the park position without providing a significant effect.
Referring now to
Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, the specification and the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/702,091, filed on Jul. 22, 2005. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60702091 | Jul 2005 | US |