U.S. patent application Ser. No. 13/305,849 entitled “Air Extraction Momentum Method,” filed concurrently herewith (now U.S. Pat. No. 8,449,092), and U.S. patent application Ser. No. 13/305,828 entitled “Air Extraction Momentum Pump for Inkjet Printhead,” filed concurrently herewith (now U.S. Pat. No. 8,454,145) are assigned to the same assignee hereof, Eastman Kodak Company of Rochester, N.Y., and contain subject matter related, in certain respect, to the subject matter of the present application. The above-identified patent applications are incorporated herein by reference in their entirety.
This invention relates generally to the field of inkjet printing, and in particular to an air extraction device for removing air from the printhead while in the printer.
An inkjet printing system typically includes one or more printheads and their corresponding ink supplies. A printhead includes an ink inlet that is connected to its ink supply and an array of drop ejectors, each ejector including an ink pressurization chamber, an ejecting actuator and a nozzle through which droplets of ink are ejected. The ejecting actuator may be one of various types, including a heater that vaporizes some of the ink in the chamber in order to propel a droplet out of the nozzle, or a piezoelectric device that changes the wall geometry of the ink pressurization chamber in order to generate a pressure wave that ejects a droplet. The droplets are typically directed toward paper or other print medium (sometimes generically referred to as recording medium or paper herein) in order to produce an image according to image data that is converted into electronic firing pulses for the drop ejectors as the print medium is moved relative to the printhead.
Motion of the print medium relative to the printhead can include keeping the printhead stationary and advancing the print medium past the printhead while the drops are ejected. This architecture is appropriate if the nozzle array on the printhead can address the entire region of interest across the width of the print medium. Such printheads are sometimes called pagewidth printheads. A second type of printer architecture is the carriage printer, where the printhead nozzle array is somewhat smaller than the extent of the region of interest for printing on the print medium and the printhead is mounted on a carriage. In a carriage printer, the print medium is advanced a given distance along a print medium advance direction and then stopped. While the print medium is stopped, the printhead carriage is moved in a carriage scan direction that is substantially perpendicular to the print medium advance direction as the drops are ejected from the nozzles. After the carriage has printed a swath of the image while traversing the print medium, the print medium is advanced, the carriage direction of motion is reversed, and the image is formed swath by swath.
Inkjet ink includes a variety of volatile and nonvolatile components including pigments or dyes, humectants, image durability enhancers, and carriers or solvents. A key consideration in ink formulation and ink delivery is the ability to produce high quality images on the print medium. Image quality can be degraded if air bubbles block the small ink passageways from the ink supply to the array of drop ejectors. Such air bubbles can cause ejected drops to be misdirected from their intended flight paths, or to have a smaller drop volume than intended, or to fail to eject. Air bubbles can arise from a variety of sources. Air that enters the ink supply through a non-airtight enclosure can be dissolved in the ink, and subsequently be exsolved (i.e. come out of solution) from the ink in the printhead at an elevated operating temperature, for example. Air can also be ingested through the printhead nozzles. For a printhead having replaceable ink supplies, such as ink tanks, air can also enter the printhead when an ink tank is changed.
In a conventional inkjet printer, a part of the printhead maintenance station is a cap that is connected to a suction pump, such as a peristaltic or tube pump. The cap surrounds the printhead nozzle face during periods of nonprinting in order to inhibit evaporation of the volatile components of the ink. Periodically, the suction pump is activated to remove ink and unwanted air bubbles from the nozzles. This pumping of ink through the nozzles is not a very efficient process and wastes a significant amount of ink over the life of the printer. Not only is ink wasted, but in addition, a waste pad must be provided in the printer to absorb the ink removed by suction. The waste ink and the waste pad are undesirable expenses. In addition, the waste pad takes up space in the printer, requiring a larger printer volume. Furthermore the waste ink and the waste pad must be subsequently disposed. Also, the suction operation can delay the printing operation
Co-pending U.S. Patent Application Publication No. 2011/0209706 entitled “Air Extraction Device for Inkjet Printhead” discloses an inkjet printhead including an air extraction chamber having a compressible member for forcing air to be vented from an air chamber through a one-way relief valve in its open position, and for applying a reduced air pressure to a membrane while the one-way relief valve is in its closed position. The compressible member, for example a bellows, is compressed by a projection from a wall of the printer when the carriage moves to an end of travel. Co-pending U.S. patent application Ser. No. 13/095,998 filed on Apr. 28, 2011, is a related design that uses a piston assembly rather than a compressible member, the piston being moved to a first position by a projection from a wall of the printer when the carriage moves to an end of travel. Both of these air extraction devices are actuated by moving the carriage to an end of travel. Both of these copending patent applications are incorporated by reference herein in their entireties.
U.S. Pat. No. 6,116,726, entitled “Ink Jet Printer Cartridge with Inertially-Driven Air Evacuation Apparatus and Method”, discloses an inkjet printhead (or pen) including a movable inertia element connected to the body of the printhead. The body defines an ink chamber and an air outlet. A compressor element is connected to the inertia element and the air outlet. When the printhead is accelerated along the carriage path during printing, the resulting motion of the inertia element operates the compressor to pump a small amount of air from the chamber. Such a pump is actuated as the carriage moves back and forth during the normal printing process and does not require the carriage to move to an end of travel in order to encounter a projection from a carriage wall. However, the design of the compressor element is somewhat complex.
What is needed is an air extraction device for an inkjet printhead that is actuated as the carriage moves back and forth during the normal printing process, but has a simpler design.
A preferred embodiment of the present invention comprises a method of making an ink cartridge by forming the ink cartridge with an ink chamber and an air accumulation chamber, forming a vent hole at a first end of the air accumulation chamber, and disposing a one way valve at the vent hole for preventing gas from entering the air accumulation chamber through the vent hole. A narrower a neck region fluidically connects the ink chamber and the air accumulation chamber within the ink cartridge. A mass is placed within the air accumulation chamber, the mass having a dimension smaller than an interior dimension of the air accumulation chamber such that the mass is movable between the first end and a second end of the air accumulation chamber. The mass has a dimension greater than the neck region for preventing the mass from entering the ink chamber. The mass comprises an average density of less than two grams per cubic centimeter and has a through-hole such that a first end of the through-hole faces the first end of the air accumulation chamber and a second end of the through-hole faces the second end of the air accumulation chamber. A one way valve at the first end of the through-hole prevents gas from entering the through-hole through the first end of the through hole.
Another preferred embodiment of the present invention comprises a method of making an ink cartridge by forming an ink cartridge having a first chamber for holding ink and a second chamber smaller than the first chamber for holding a smaller portion of the ink and for holding air, including forming a neck region for fluidically connecting the first chamber and the second chamber. A vent hole is formed at a first end of the first chamber for evacuating a portion of the air.
A mass is disposed within the first chamber and has a dimension smaller than an interior dimension of the first chamber such that the mass is movable between the first end and a second end of the first chamber. It is also large enough such that air is forced out of the vent hole when the mass moves in a direction toward the first end of the first chamber. The neck region is formed proximate the second end of the first chamber so that there is enough air space in the first chamber between the first end of the mass and the vent hole to capture air to be forced out of the vent hole when the mass moves toward the vent hole. The mass has a through hole and a one way valve at a first end of the through-hole for preventing gas from entering the through-hole through the first end of the through hole. The vent hole also has a one way valve for preventing air from entering the first chamber through the vent hole. A density of the ink and the mass has the following relationship: if the ink comprises a density di grams/cm3, then the mass is formed such that the mass has an effective density dm grams/cm3, wherein 0.8di<dm<1.2di.
These, and other, aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention and numerous specific details thereof, is given by way of illustration and not of limitation. For example, the summary descriptions above are not meant to describe individual separate embodiments whose elements are not interchangeable. In fact, many of the elements described as related to a particular embodiment can be used together with, and possibly interchanged with, elements of other described embodiments. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications. It is to be understood that the attached drawings are for purposes of illustrating the concepts of the invention. The figures below are intended to be drawn neither to any precise scale with respect to relative size, angular relationship, or relative position nor to any combinational relationship with respect to interchangeability, substitution, or representation of an actual implementation.
Referring to
In the example shown in
In fluid communication with each nozzle array is a corresponding ink delivery pathway. Ink delivery pathway 122 is in fluid communication with the first nozzle array 120, and ink delivery pathway 132 is in fluid communication with the second nozzle array 130. Portions of ink delivery pathways 122 and 132 are shown in
Not shown in
Printhead 250 is mounted on carriage 200, and ink tanks 262 are mounted to supply ink to printhead 250, and contain inks such as cyan, magenta, yellow and black, or other recording fluids. Optionally, several ink tanks can be bundled together as one multi-chamber ink supply, for example, cyan, magenta and yellow. Inks from the different ink tanks 262 are provided to different nozzle arrays, as described in more detail below.
A variety of rollers are used to advance the recording medium through the printer. In the view of
Typical lengths of recording media are 6 inches for photographic prints (4 inches by 6 inches) or 11 inches for paper (8.5 by 11 inches). Thus, in order to print a full image, a number of swaths are successively printed while moving printhead chassis 250 across the piece 371 of recording medium. Following the printing of a swath, the recording medium 20 is advanced along media advance direction 304. Feed roller 312 can include a separate roller mounted on the feed roller shaft, or can include a thin high friction coating on the feed roller shaft. A rotary encoder (not shown) can be coaxially mounted on the feed roller shaft in order to monitor the angular rotation of the feed roller 312. The motor that powers the paper advance rollers, including feed roller 312 and discharge roller 324, is not shown in
Toward the rear of the printer chassis 300, in this example, is located the electronics board 390, which includes cable connectors for communicating via cables (not shown) to the printhead carriage 200 and from there to the printhead 250. Also on the electronics board are typically mounted motor controllers for the carriage motor 380 and for the paper advance motor, a processor and/or other control electronics (shown schematically as controller 14 and image processing unit 15 in
Toward the right side of the printer chassis 300, in the example of
A different way to remove air from the printhead 250 is shown in
An ink source such as ink tank 262 is fluidically connected to printhead body 240 at ink inlet port 245 in order to replenish ink 243 in ink chamber 242 to replace ink that is used during printing. The ink source typically includes a pressure regulation mechanism (not shown) in order to keep ink 243 at a sufficiently negative pressure that it does not drool out the nozzles (not shown) in nozzle face 252. As ink 243 exits ink chamber 243 through ink outlet 248, the volume of air space 217 increases, thereby reducing the air pressure in air space 217. This reduced air pressure draws ink 243 from the ink source (such as replaceable ink tank 262 that is mountable on printhead 250) through ink outlet port 263 that mates with ink inlet port 245 in order to replenish the ink 243 in ink chamber 242 and air accumulation chamber 220. Typically a porous filter 247 is disposed at the entry to ink inlet port 245.
Although a replaceable ink tank 262 is one type of ink source, alternatively an off-axis ink source (not shown) that is stationarily mounted on the printer chassis 300 (
In
Further details will now be provided in order to explain how excess air (from air bubbles 244) in air space 217 is removed from air accumulation chamber 220. Air accumulation chamber 220 includes a first wall 225 located near neck region 239 and a second wall 226 located opposite first wall 225. Air vent opening 228 is located in or near second wall 226. A one-way valve 229 covers air vent opening 228. In the example shown in
Mass 222 is moved back and forth along chamber axis 221 due to forces (inertia, momentum) arising from carriage acceleration and deceleration at least at both ends of carriage travel. The force on mass 222 will exceed the force on the ink 243 in air accumulation chamber 220, if the density of mass 222 is greater than the average density of the ink 243 and the air in air space 217. If the density of mass 222 is the same as the average density of ink 243 and air in air space 217, there will be no differential force to move mass 222 along chamber axis 221. Typically the density of mass 222 is on the order of the density of ink 243 that is on the order of 1 gram /cm3. To keep the mass 222 from moving too quickly in air accumulation chamber 220 (tending to force ink out of air vent opening 228), the density or average density of mass 222 is typically less than 2 grams/cm3.
A dimension of mass 222 is preferably greater than a dimension of neck region 239, thereby constraining the mass 222 from passing through neck region 239 and entering ink chamber 243. In the example of
Mass 222 can have a variety of shapes, but it is typically advantageous for low friction travel along chamber axis 221 if mass 222 includes a circular cross-section in a plane perpendicular to chamber axis 221. In the example of
As described above relative to
A mass 222 having a through hole 223 has an effective density that is an average of the density of solid material that mass 222 is made of and the density of the air or ink in through hole 223. If the ink has a density di grams/cm3, then for effective pumping, without over-pumping, it is desirable for the mass 222 to have an effective density of dm grams/cm3, where 0.8di<dm<1.2di.
In the examples shown in
In
Because embodiments of this invention extract air without extracting ink, less ink is wasted than in conventional printers. The waste ink pad used in conventional printers can be eliminated, or at least reduced in size to accommodate maintenance operations such as spitting from the jets. This allows the printer to be more economical to operate, more environmentally friendly and more compact. Furthermore, since the air extraction method of the present invention is done during printing, it is not necessary to delay printing operations to extract air from the printhead.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
6116716 | Tajika et al. | Sep 2000 | A |
6116726 | Driggers | Sep 2000 | A |
6378971 | Tamura et al. | Apr 2002 | B1 |
6457820 | Cai et al. | Oct 2002 | B1 |
8141997 | Gengrinovich et al. | Mar 2012 | B2 |
8449092 | Murray | May 2013 | B1 |
8454145 | Murray | Jun 2013 | B1 |
20110209706 | Truschel et al. | Sep 2011 | A1 |
Entry |
---|
Co-pending U.S. Appl. No. 13/095,998, filed Apr. 28, 2011, titled “Air Extraction Piston Device for Inkjet Printhead”; of Richard A. Murray. |
Number | Date | Country | |
---|---|---|---|
20130133200 A1 | May 2013 | US |