Air filter for an internal combustion engine

Information

  • Patent Grant
  • 6824591
  • Patent Number
    6,824,591
  • Date Filed
    Monday, February 10, 2003
    21 years ago
  • Date Issued
    Tuesday, November 30, 2004
    19 years ago
Abstract
An air filter for an internal combustion engine includes an air filter housing, the walls of which encompass a filter compartment in which a filter element is positioned, having an intake and an exhaust. Openings that can be sealed off or opened up based upon the operating conditions of the internal combustion engine are provided in a least one wall of the air filter housing. In this way, effective modulation of induction noise (sound modulation) can be achieved in a simple way and manner.
Description




BACKGROUND AND SUMMARY OF THE INVENTION




The present invention relates to an air filter for an internal combustion engine including an air filter housing, walls of which encompass a filter chamber, a filter element positioned in the filter chamber, an air filter housing intake, and an air filter housing exhaust. The invention also concerns a process of modulating noise during operation of an internal combustion engine.




One air filter for an internal combustion engine is known from German publication DE 199 40 610 A1, in which it is proposed that one wall of the air filter housing be provided with a diaphragm made of a material that is less resistant to sound waves than the housing wall itself. This is intended to produce a directed generation of sound, allowing the driver to receive adequate information regarding the engine's operating conditions. With this embodiment, however, there is no transmission of airborne noise through the filter housing; consequently, an effective modulation of the induction noise can be achieved only within certain limits.




It is thus one object of the invention to develop a device through which modulation of induction noise can be improved.




This object is attained by providing openings in at least one of the walls of the air filter housing, and by sealing off or opening up the openings depending upon operating conditions of the internal combustion engine.




In operation of the internal combustion engine, airborne noise is transmitted through the air filter housing into the engine compartment through the openings in a wall of the air filter housing. As a result, depending upon the operating conditions of the internal combustion engine, the acoustic pattern within the passenger compartment of the vehicle can be improved as necessary. Under certain operating conditions, however, e.g., in cases of low load and speed, to prevent an intake of warm air that would reduce the output of the internal combustion engine, these openings are designed so that they can be closed. At high loads and speeds, these airborne noise passageways can then be opened, in order to ensure an attractive sound inside the compartment. Furthermore, with the additional openings in the air filter, pulsations in the intake air are reduced, and the air filter housing is less prone to vibration.




With features specified in dependent claims, additional advantageous embodiments of the invention are possible.




In a first embodiment, the closeable openings in the air filter housing are converted in a simple manner using a plate element that is provided with openings and is positioned inside the air filter housing; this plate element operates in conjunction with the openings in one wall of the air filter housing as a sort of sliding register.




The plate element that is provided with the openings can be controlled in a simple manner via an actuator, which is connected to a vacuum tank.




The plate element lies advantageously on the base panel of the air filter housing, as an underbody, and is guided along two rails oriented along the two lengthwise sides of the plate element, which are fastened to the wall of the housing that is equipped with the openings.




In a second embodiment, the openings in one wall of the air filter housing are monitored using flexible flap elements. In this case, the control of the flaps is accomplished via the pressure ratios that prevail within the air filter. At low load and speed, the flaps are closed; at high load and speed and corresponding air flow mass, the vacuum conditions prevailing within the air filter housing increase, and the flexible flaps clear the openings in the air filter housing.




The invention is specified in greater detail in the following description and drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic representation of an air filter housing in a first state of operation,





FIG. 2

is a schematic representation of the air filter housing in a second state of operation,





FIG. 3

is a schematic representation of a sliding register in a first operating position,





FIG. 4

is a schematic representation of the sliding register in a second operating position,





FIG. 5

is a schematic representation of an air filter housing in accordance with a second exemplary embodiment in a first state of operation,





FIG. 6

is a schematic representation of the air filter housing in accordance with the second exemplary embodiment in a second state of operation,





FIG. 7

is a schematic representation of flexible flaps in a first operating position, and





FIG. 8

is a schematic representation of flexible flaps in a second operating position.











DETAILED DESCRIPTION OF THE INVENTION




The schematically illustrated air filter


10


includes an air filter housing


12


, which is provided with an intake


14


for unfiltered air and an exhaust


16


for filtered air. A filter element


18


is positioned within the air filter housing, dividing the inner space of the air filter housing


12


into a lower chamber, hereinafter referred to as the unfiltered air chamber


20


, and an upper chamber, hereinafter referred to as the filtered air chamber


22


. The lower housing wall


24


that delimits the unfiltered air chamber


20


is provided with rectangular-shaped openings


26


. Along the housing wall


24


is a sliding plate element


28


, which is equipped with openings


30


, the size and shape of which correspond essentially with the openings in the housing wall


24


. To guide the plate element


28


, guide rails (not illustrated here) are provided on the two lengthwise sides of the plate element


28


, and are mounted on the housing wall


24


.




The plate element


28


is connected to an actuator


34


via a coupling rod


33


, with this actuator being supplied via a vacuum tank, wherein the coupling rod


33


and/or the plate element


28


are controlled based upon the operating values of the internal combustion engine, e.g., speed, load, or temperature of the intake air.




The control of the sliding register formed by the housing wall


24


and the plate element


28


is implemented such that, as shown in

FIG. 3

, when the internal combustion engine is operating at idle or at low load and speed, the openings


26


in the housing wall


24


are closed by the plate element


28


, while at high load and speed the plate element


28


is shifted via the coupling rod


33


in the direction indicated by the arrow in

FIG. 4

, so that the openings


26


and


30


are juxtaposed, allowing airborne noise to travel through the air filter housing


12


into the engine compartment. The form and dimensions of the openings


26


and


30


can be adjusted appropriately to comply with different engine applications.




In a second exemplary embodiment, in which similar components are indicated using similar reference figures, the openings


26


in the lower housing wall


24


are monitored via flexible flaps


32


. The flaps


32


, made e.g. of rubber or other similar materials, are mounted on a lengthwise side of the rectangular-shaped openings


26


, and correspond in dimension to the dimensions of the openings


26


, so that when they are in a closed position (see

FIGS. 5

,


7


) they completely seal off the openings


26


. As with the first exemplary embodiment, the flaps


32


seal off the openings


26


when the internal combustion engine is running at idle or at low load and speed, due to the prevailing pressure ratios within the air filter housing


12


, while at high load and speed the flaps


32


automatically open toward the inside as a result of the rising vacuum pressure within the air filter housing


12


, so that a corresponding transfer of airborne noise is possible.




The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.



Claims
  • 1. A process of modulating noise during operation of an internal combustion engine comprising:providing an air filter including an air filter housing having walls which encompass a filter chamber, a filter element which is positioned in the filter chamber, an intake, and an exhaust, and sealing off or opening up openings provided in at least one wall of the air filter housing depending upon operating conditions of the internal combustion engine by guiding a plate element, equipped with openings, provided in the air filter housing and oriented such that it can be shifted relative to the at least one wall in which the openings are provided, within the air filter housing.
  • 2. The process according to claim 1, wherein the plate element is controlled via an actuator which is connected to a vacuum tank.
  • 3. The process according to claim 2, wherein the plate element lies along the at least one wall of the air filter housing.
  • 4. The process according to claim 1, wherein the plate element lies along the at least one wall of the air filter housing.
  • 5. A process of modulating noise during operation of an internal combustion engine comprising:providing an air filter including an air filter housing having walls which encompass a filter chamber, a filter element which is positioned in the filter chamber, an intake, and an exhaust, and sealing off or opening up openings provided in at least one wall of the air filter housing via flexible flaps depending upon operating conditions of the internal combustion engine.
  • 6. The process according to claim 5, wherein the flaps are controlled based upon pressure ratios that prevail within the air filter housing.
  • 7. An air filter for an internal combustion engine comprising:an air filter housing, walls of which encompass a filter chamber, a filter element positioned in the filter chamber, an intake, an exhaust, and a plate element that is equipped with openings and can be guided within the air filter housing provided in the air filter housings, wherein openings are provided in at least one of the walls of the air filter housing, wherein the openings can be sealed off or opened up depending upon operating conditions of the internal combustion engine, and wherein the plate element is oriented such that it can be shifted relative to the at least one of the walls in which the openings are provided.
  • 8. The air filter in accordance with claim 7, wherein the plate element is controlled via an actuator which is connected to a vacuum tank.
  • 9. The air filter in accordance with claim 8, wherein the plate element lies along the at least one of the walls of the air filter housing.
  • 10. The air filter in accordance with claim 7, wherein the plate element lies along the at least one of the walls of the air filter housing.
  • 11. An air filter for an internal combustion engine comprising:an air filter housing, walls of which encompass a filter chamber, a filter element positioned in the filter chamber, an intake, and an exhaust, wherein openings are provided in at least one of the walls of the air filter housing, wherein the openings can be sealed off or opened up depending upon operating conditions of the internal combustion engine, and wherein the openings are monitored via flexible flaps.
  • 12. The air filter in accordance with claim 11, wherein the flaps are controlled based upon pressure ratios that prevail within the air filter housing.
Priority Claims (2)
Number Date Country Kind
102 05 416 Feb 2002 DE
102 13 604 Mar 2002 DE
Parent Case Info

This application claims the priority of German applications 102 05 416.9, filed Feb. 9, 2002, and 102 13 604.1, filed Mar. 27, 2002, the disclosures of which are expressly incorporated by reference herein.

US Referenced Citations (18)
Number Name Date Kind
1173403 Anderson Feb 1916 A
1200688 Anderson Oct 1916 A
2636125 Southworth Apr 1953 A
2755882 MacCaferri Jul 1956 A
2788086 Sebok Apr 1957 A
2848065 Sebok Aug 1958 A
2904129 McMichael Sep 1959 A
3209520 McKinlay Oct 1965 A
4124091 Mizusawa Nov 1978 A
4192660 Ishidera et al. Mar 1980 A
4197922 Weber et al. Apr 1980 A
4713097 Grawi et al. Dec 1987 A
5161513 Feldinger Nov 1992 A
5241512 Argy et al. Aug 1993 A
6382161 Alex et al. May 2002 B1
20020124734 Spannbauer et al. Sep 2002 A1
20030221562 Bloomer Dec 2003 A1
20040011011 Storz et al. Jan 2004 A1
Foreign Referenced Citations (4)
Number Date Country
1052169 Mar 1959 DE
19811051 Sep 1999 DE
19940610 Mar 2001 DE
0242797 Oct 1987 EP
Non-Patent Literature Citations (1)
Entry
English Abstract of Japanese Publication No. 10-339225, published Dec. 22, 1998.