The present invention generally relates to the field of turbomachines for aircrafts, such as two-spool turbofan engines. The invention more particularly relates to a seal for air and fire sealing between two members of a turbomachine, such as a bleed duct and an intermediate casing hub.
A turbofan engine conventionally comprises a fan ducted by a nacelle, a primary flow annular space and a secondary flow annular space. The air mass sucked by the fan is divided into a primary flow, which circulates in the primary flow space (also called primary flow aerodynamic path), and into a secondary flow, which is concentric with the primary flow and circulates in the secondary flow space (also called secondary flow aerodynamic path). The primary flow space passes through a main body comprising, from upstream to downstream in the gas flow direction, one or more compression stages, for example a low pressure compressor and a high pressure compressor, a combustion chamber, one or more turbine stages, for example a high pressure turbine and a low pressure turbine, and a gas exhaust nozzle.
This turbofan engine comprises on the other hand an intermediate casing the hub of which is arranged between the casing of the low pressure compressor and the casing of the high pressure compressor. The intermediate casing hub can comprise variable bleed valves (VBV), the role of which is to regulate the inlet flow rate to the high pressure compressor, by discharging part of the air off the primary flow space.
The inner annular shell 12 delimits the primary flow space 18 of the primary flow F1 of the turbofan engine and comprises air inlet ports 19 circumferentially distributed about an axis X of the hub 10, this axis X being the same as the rotation axis of the turbofan engine. Each of the inlet ports 19 is plugged by a corresponding bleed valve 20 for regulating the flow rate of the high pressure compressor 17. The outer annular shell 13 delimits in turn the secondary flow space 21 of the secondary flow F2, and comprises air outlet ports 22 arranged downstream of the downstream transverse flange 15 and which are circumferentially distributed about the axis X.
Between the inner 12 and outer shells 13, and between the upstream 14 and downstream 15 transverse flanges, intermediate spaces 23 distributed about the axis X of the hub 10 are provided. The intermediate spaces 23 are located upstream of an inter-stream zone ZC, commonly designated by the term “core zone” or “core compartment”.
The turbofan engine further comprises bleed streams, which extend between the inlet ports 19 and the outlet ports 22. Each bleed stream consists, from upstream to downstream between the corresponding inlet port 19 and outlet port 22, of one of the intermediate spaces 23 and then of a bleed duct 24. Each bleed duct 24 comprises an intermediate port 25, which opens into the intermediate space 23 at the upstream surface of the downstream transverse flange 15, and extends to an exhaust grid 26 called a “VBV grid”, disposed at the outlet port 22. When a bleed valve 20 is in an open position, an air flow F3 catched by the same and called a bleed flow passes through the intermediate space 23, the bleed duct 24 and then joins the secondary flow space 21 by passing through the exhaust grid 26.
Thus, when the air flow rate that can enter the high pressure compressor 17 is reduced, an extra air in the primary flow space 18 can be discharged into the secondary flow space 21 by these bleed streams, thus avoiding pumping phenomena that can result in a deterioration or even a full destruction of the low pressure compressor 16.
In the example of
Patent application FR3036136 describes an O-ring air-fire seal disposed between the bleed duct and the outer annular shell of an intermediate casing hub. This seal is made of silicone and can comprise a superimposition of several fabrics plies, in particular of glass and/or ceramics.
This O-ring seal however quickly loses its efficiency when exposed to flame. Indeed, the temperature impairs the properties of materials which constitute the seal, in particular silicone, which can result in a seal failure and an air sealing disruption.
The invention aims at ensuring an air and fire sealing which is durable and reliable, at least for the first fifteen minutes of a fire, between a tubular shaped first member of a turbomachine and a second member of the turbomachine.
According to a first aspect of the invention, this aim is achieved by providing an air-fire seal designed to be attached to the first tubular member and to rest against the second member, this seal comprising:
Thus, by dissociating the air-sealing function and the fire sealing function by means of two lips facing each other, the efficiency and lifespan of the sealing solution are greatly improved. The first fire-stop lip acts as a barrier or shield against flame by protecting the second air-sealing lip located behind. The second air-sealing lip is not exposed to flame until the first fire-stop lip has not failed, which extends its lifetime in case of fire.
In a particular embodiment, the first fire-stop lip is located radially outermost relative to the reference axis and the second air-sealing lip is located radially innermost relative to the reference axis. This embodiment of the seal finds application in particular in a two-spool turbofan engine between a bleed duct and an intermediate casing hub. The seal is then mounted around the bleed duct.
In a preferential embodiment, the seal comprises a third annular fire-stop lip extending from the attachment base over a third length lower than the first length and radially disposed between the first fire-stop lip and the second air-sealing lip. The third fire-stop lip constitutes a further obstacle for flames, which further improves the lifespan of the seal.
The device according to the invention can also have one or more of the characteristics below, considered singly or according to any technically possible combination:
A second aspect of the invention relates to an assembly comprising:
The seal is advantageously configured to prevent air from circulating between a first enclosure and a second enclosure disposed on either side of the seal.
Preferably, the first contact surface of the first fire-stop lip is perpendicular to the reference axis and the second contact surface of the second air-sealing lip is parallel to the reference axis.
Finally, a third aspect of the invention relates to a turbomachine, such as a two-spool turbofan engine, comprising an assembly according to the second aspect of the invention.
Further characteristics and advantages of the invention will clearly appear from the description thereof given below, by way of indicating and in no way limiting purposes, in reference to the appended figures, in which:
For more clarity, identical or similar elements are marked by identical reference signs throughout the figures.
The first member 31, which is tubular shaped, occupies a port 34 of corresponding shaped provided in a first wall 321 of the second member 32. This port 34 being of dimensions slightly higher than the external dimensions of the first tubular member 31, there is a clearance 35 between the first and second members 31-32. The seal 30 is located in the immediate proximity of this clearance 35.
The seal 30 is advantageously symmetrical around a reference axis Y, which is the same as the symmetry axis of the first tubular member 31. It comprises a Y-axis annular attachment base 300 and at least two annular lips 301-302, coaxial with the attachment base 300. Both lips 301-302 extend facing each other from the attachment base 300 toward the second member 32.
Preferably, the attachment base 300 rests against a flange 310 of the first tubular member 31 and extends in a radial direction, that is perpendicular to the reference axis Y. The attachment base 300 can be bonded to the flange 310 prior to assembling the first and second members 31-32, for example by means of a silicone elastomer cross-linking at room temperature, or RTV (for “Room Temperature Vulcanising”).
The first lip 301, disposed in this example radially outermost with respect to the reference axis Y, is a stop-fire type lip, that is it is designed to resist a fire that would take place in the first enclosure 33a and to stop the advance of this fire to the second enclosure 33b, at least temporarily. The first lip 301 is dimensioned to rest against the first wall 321 of the second member 32. The first lip 301 thus protects other parts of the seal 30 from fire, in particular the second lip 302. The first wall 321 of the second member 32 is preferably oriented perpendicular to the reference axis Y.
The second lip 302, disposed radially innermost relative to the reference axis Y, is an air-sealing lip. Its role is to maintain the second enclosure 33b under pressure by preventing the air flow from penetrating in the first enclosure 33a and from feeding the fire contained in this zone. The second lip 302 is of a length L2 lower than the length L1 of the first lip 301, so as not to contact the first wall 321, which would increase the mounting force of the first member 31 (equipped with the seal 30) with the second member 32. By way of example, the length L1 of the first lip 301 is about 9 mm and the length L2 of the second lip 302 is about 8 mm.
To ensure air-sealing, the second lip 302 rests against a second wall 322 of the second member 32, preferably oriented parallel to the reference axis Y. By way of example, this second wall 322 consists of an (Y-axis) annular rib set back relative to the port 34 and projecting from the first wall 321 towards the flange 310 of the first member 31.
Because it is substantially shorter than the first lip 301, the second lip 302 is free to slide along the second wall 322. This enables it not to be impacted by dimensional variations in the housing in view of axial manufacturing tolerances and compensate for possible axial movements between the first and second members 31-32 when the turbofan engine is operated.
By virtue of these arrangements, the second air-sealing lip 302 is radially rather than axially stressed. The stresses are low because they are essentially due to air pressure in the second enclosure 33b, and not upon mounting the first and second members 31-32. The deformation rate of the second lip 302 is thus low in comparison with the sealing solutions of prior art, which minimising damage or premature aging risks.
Advantageously, the second air-sealing lip 302 is tilted outwardly by an angle α between 5° and 7° relative to the reference axis Y and extends over its entire length in parallel to the first fire-stop lip 301. Further, as is represented in
The seal 30 comprises, in this preferential embodiment of
The seal 30 can be built in different ways. In a first exemplary embodiment represented in
In a second exemplary embodiment, the seal 30 comprises a metal reinforcement 42 embedded in the matrix 41 of self-extinguishable silicone elastomer. The metal reinforcement 42, for example of steel, Hastelloy® or titanium, makes an efficient fire barrier. It extends preferentially in the attachment base 300, the first fire-stop lip 301 (except for its free end, such that this can bend in contact with the second member 32) and the third fire-stop lip 303. The second air-sealing lip 302 is preferentially free of metal reinforcement to accommodate more readily to movements and vibrations of the members 31-32.
In each of these exemplary embodiments, the second air-sealing lip 302 can be coated with an antifriction fabric 43 at its contact surface, in order to more readily slide on the second wall 322 of the second member 32. The antifriction fabric 43 is also resistant to high temperatures (up to 1100° C. in case of fire) and antistatic (in order not to create sparks). The antifriction fabric 43 is for example that marketed by the “DuPont” Company under “Nomex®”.
The seal 30 of
The seal 30 can thus be mounted around a bleed duct and cooperate with the downstream transverse flange 15 of the intermediate casing hub. In other words, in this application, the first tubular member 31 of
The seal 30 has the advantage, because of its design, not to significantly impact the geometries of the bleed duct and of the intermediate casing hub. Indeed, a deep change in these geometries could increase the mass and manufacturing costs of the intermediate casing. The use of the seal 30 only requires a repositioning of the existing flange of the bleed duct and a provision of the surface of the downstream transverse flange on which the sealing second lip rests. The length of this contact surface (in the axial direction of
In some two-spool turbofan engines, such as that partially represented in
In other turbofan engines, the bleed ducts belong to an extension of the intermediate casing, commonly called “kit engine”. This extension of the intermediate casing conventionally comprises several shell sectors which reform the secondary flow space and structural connecting arms enabling (electrical, mechanical, hydraulic) ancillary pieces of equipment to pass between the nacelle and the different components of the turbofan engine (core zone in particular). The bleed ducts are then premounted on the shell sectors and then mounted by hand without specific tooling in the intermediate casing. The seal 30 is particularly adapted to this last type of turbofan engine, because it is designed to minimise the mounting force, as has been previously described.
Many variants and modifications of the seal according to the invention will appear to those skilled in the art. For example, in some places of the turbomachine, the location of the first and second enclosures 33a-33b can be reversed, that is the first enclosure 33a is travelled by an air flow and the second enclosure 33b has a fire risk. The positions of the first fire-stop lip 301 and the second air-sealing lip 302 will be also reversed. In other words, the first fire-stop lip 301 will be located radially innermost and the air-sealing second lip 302 will be located radially outermost. Finally, the lips 301-302 could be tilted (i.e. rotated) by the angle α in the other direction, that is inwardly.
Eventually, the composition of the seal 30 is not limited to the examples of materials described previously in connection with
Number | Date | Country | Kind |
---|---|---|---|
1752096 | Mar 2017 | FR | national |
This application is a continuation of application Ser. No. 15/920,874 filed Mar. 14, 2018, which claims priority to French Patent Application No. 1752096, filed Mar. 15, 2017, the entire contents of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3965066 | Sterman | Jun 1976 | A |
5249812 | Volden | Oct 1993 | A |
6751962 | Kuwabara | Jun 2004 | B1 |
7481037 | Takaya | Jan 2009 | B2 |
7527469 | Zborovsky | May 2009 | B2 |
7908866 | Kato | Mar 2011 | B2 |
20040139746 | Soechting | Jul 2004 | A1 |
20080236170 | Weaver | Oct 2008 | A1 |
20100247298 | Nakamura et al. | Sep 2010 | A1 |
20140147271 | Burd | May 2014 | A1 |
20170292397 | Taniguchi | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2 275 655 | Jan 2011 | EP |
3 112 605 | Jan 2017 | EP |
3 036 136 | Nov 2016 | FR |
WO 2016047432 | Mar 2016 | WO |
Entry |
---|
Search Report as issued in French Patent Application No. 1752096, dated Nov. 29, 2017. |
Number | Date | Country | |
---|---|---|---|
20200173296 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15920874 | Mar 2018 | US |
Child | 16784624 | US |