The present invention relates to an air-floating-type base isolation system in which a bottom plate and a top plate constituting the foundations of a building are both used as part of an air pressure chamber, allowing the top plate to float directly above the bottom plate.
Known air-floating-type base isolation devices use a plate-type airtight material in order to maintain air pressure in an air pressure chamber. But, it is difficult to fit the airtight material inside the top plate and bottom plate because of the nature of the construction and checking, maintenance operations involved. Therefore, the airtight material is often only fitted to the outside and in a region which can be reached by hand from the outside. This means that the air pressure chamber is usually only provided around the periphery of a building. Problems may arise in terms of inclination due to the location of the center of gravity of the building.
The present invention has an object of resolving the problems described above, and it aims to facilitate construction and make the checking and maintenance operations easier, while also allowing horizontal floating, wherever the center of gravity of a building lies.
In order to resolve the problems with known systems, internal operations are dispensed with when the top plate is constructed. This is done by prefabricating a groove into one plate, preferably the top plate. A sliding expanding pipe shielding material made of airtight material is inserted into the groove. The material is elastic and acts as an airtight material. The inside of the sliding expanding pipe shielding material is a cavity. Air is injected under pressure into the sliding expanding pipe shielding material, thereby expanding the expanding pipe shielding material so that an airtight effect between the plates is produced. The airtight material is disposed over at least one of the plates to define and enclose a region which becomes an airtight chamber due to the expansion of the shielding material.
The present invention not only makes operations to fit airtight material inside either of the plates unnecessary, it also makes it possible to allow the building to float horizontally during an earthquake by adjustment of the pressure in the air pressure chambers, even if the center of gravity of the top plate and the center of gravity of the building are different. The invention enables a plurality of air pressure chambers to be formed by a plurality of grooves or other path guides for the shielding material, permitting the shielding material to pass beneath the top plate and to surround, define and cause the air pressure chambers and preferably a plurality thereof to be formed.
As shown in
The tubular sliding expanding pipe shielding material 1 is inserted from a sealed material insertion port. Use may be made of a guiding cord, or the like, which has been installed beforehand, to enable the insertion.
Once the insertion of the material 1 in a groove 4 is complete, the end of the sliding expanding pipe shielding material 1 may be fitted with an air injection port 6, as seen in
As shown in
Low-pressure compressed air is injected through an air injection port 7 into each air pressure chamber 5 at the same time. As the air pressure in the air pressure chamber 5 rises, the top plate 3 floats, and the sliding expanding pipe shielding material 1 expands at the same time, causing the top plate 3 to rise while air-tightness is maintained.
The shaking produced during an earthquake is transferred to the bottom plate 2. But, friction resistance between the plates is lessened because the upper plate 3 is floating, so that the shaking is not readily transferred to the top plate 3. As a result, the building built on top of the top plate 3 is not readily subjected to the shaking caused by the earthquake.
Furthermore, the building can be allowed to float horizontally by adjustment of the respective pressures in the plurality of air pressure chambers 5, even if the building does not float horizontally due to the bias of the center of gravity thereof.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-341845 | Dec 2007 | JP | national |