The present subject matter relates generally to ice making appliances and/or refrigeration appliances including features for making ice.
Generally, refrigerator appliances include a cabinet that defines a fresh food chamber for receipt of food items for storage. Many refrigerator appliances further include a freezer chamber for receipt of food items for freezing and storage. Certain refrigerator appliances include an ice maker. In order to produce ice, liquid water is directed to the ice maker and frozen. Accordingly, refrigerator appliances having both an ice maker and a freezer chamber commonly include the ice maker in the freezer chamber since both operate at or around the same general temperatures. However, in many currently utilized refrigerator appliances, the freezer chamber is positioned below the fresh food chamber, which is sometimes referred to as a bottom freezer. In such refrigerator appliances, locating the ice maker in the bottom freezer may be inconvenient or otherwise not desired.
Accordingly, an ice making system for a refrigerator appliance with features permitting operation remote from the freezer chamber would be useful.
An ice making appliance includes a sealed icebox compartment including a heat exchange opening with an ice maker disposed within the sealed icebox compartment. The ice maker includes a heat exchanger positioned at the heat exchange opening of the icebox compartment and a mold body configured for receiving liquid water and forming ice. The ice making appliance also includes a defrost conduit having a first portion positioned below the mold body, the first portion of the defrost conduit extends generally perpendicularly to a vertical direction and slopes towards a second portion of the defrost conduit, the second portion of the defrost conduit extends along the vertical direction between the first portion of the defrost conduit and a drain conduit. The ice making appliance also includes an air circulation conduit providing air circulation within the sealed icebox compartment. Additional aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In accordance with one embodiment, an ice making appliance is provided. The ice making appliance includes an icebox compartment including a heat exchange opening with an ice maker disposed within the icebox compartment. The ice maker includes a heat exchanger positioned at the heat exchange opening of the icebox compartment and a mold body configured for receiving liquid water and forming ice. The ice making appliance also includes a defrost conduit having a first portion positioned below the mold body, the first portion of the defrost conduit extends generally perpendicularly to a vertical direction and slopes towards a second portion of the defrost conduit, the second portion of the defrost conduit extends along the vertical direction between the first portion of the defrost conduit and a drain conduit.
In accordance with another embodiment, an ice making appliance is provided. The ice making appliance includes a sealed icebox compartment including a heat exchange opening, an ice maker disposed within the sealed icebox compartment, the ice maker has a heat exchanger positioned at the heat exchange opening of the sealed icebox compartment. The ice making appliance also includes an air circulation conduit providing air circulation within the sealed icebox compartment.
In accordance with another embodiment, a refrigerator appliance is provided. The refrigerator appliance includes a cabinet defining a fresh food chamber and a freezer chamber, the freezer chamber positioned below the fresh food chamber along a vertical direction, the cabinet also includes a sealed icebox compartment outside of the freezer chamber and proximate to the fresh food chamber. The sealed icebox compartment includes a heat exchange opening. The refrigerator appliance also includes an ice maker disposed within the sealed icebox compartment, the ice maker including a heat exchanger positioned at the heat exchange opening of the icebox compartment and a mold body configured for receiving liquid water and forming ice. The refrigerator appliance also includes a defrost conduit with a first portion positioned below the mold body, the first portion of the defrost conduit extends generally perpendicularly to a vertical direction and slopes towards a second portion of the defrost conduit, the second portion of the defrost conduit extends along the vertical direction between the first portion of the defrost conduit and a drain conduit, and an air circulation conduit providing air circulation within the sealed icebox compartment.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Refrigerator appliance 100 includes a cabinet or housing 120 defining an upper fresh food chamber 122 and a lower freezer chamber 124 arranged below the fresh food chamber 122 on the vertical direction V. As such, refrigerator appliance 100 is generally referred to as a “bottom mount refrigerator.” In the exemplary embodiment, housing 120 also defines a mechanical compartment (not shown) for receipt of a sealed cooling system (not shown). Using the teachings disclosed herein, one of skill in the art will understand that the present invention can be used with other types of refrigerators (e.g., side-by-sides) or any other types of appliance as well. Consequently, the description set forth herein is for illustrative purposes only and is not intended to limit the invention in any aspect.
Refrigerator doors 126 are rotatably hinged to an edge of housing 120 for accessing fresh food chamber 122. Refrigerator doors 126 rotate perpendicularly to the vertical direction V, e.g., through a plane defined by the lateral direction L and the transverse direction T. It should be noted that while two doors 126 in a “French door” configuration are illustrated, any suitable arrangement of doors utilizing one, two or more doors is within the scope and spirit of the present disclosure. A freezer door 130 is arranged below refrigerator doors 126 for accessing freezer chamber 124. In the exemplary embodiment, freezer door 130 is coupled to a freezer drawer (not shown) slidably coupled within freezer chamber 124.
Operation of the refrigerator appliance 100 can be regulated by a controller 134 that is operatively coupled to a user interface panel 136. Panel 136 provides selections for user manipulation of the operation of refrigerator appliance 100 such as e.g., temperature selections, etc. In response to user manipulation of the user interface panel 136, the controller 134 operates various components of the refrigerator appliance 100. The controller may include a memory and one or more microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 100. The memory may represent random access memory such as DRAM, or read only memory such as ROM or FLASH. In some embodiments, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor.
The controller 134 may be positioned in a variety of locations throughout refrigerator appliance 100. In the illustrated embodiment, the controller 134 may be located within the door 126. In such an embodiment, input/output (“I/O”) signals may be routed between the controller and various operational components of refrigerator appliance 100. In one embodiment, the user interface panel 136 may represent a general purpose I/O (“GPIO”) device or functional block. In one embodiment, the user interface 136 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, and touch pads. The user interface 136 may include a display component, such as a digital or analog display device designed to provide operational feedback to a user. The user interface 136 may be in communication with the controller via one or more signal lines or shared communication busses.
Referring now to
As shown for example in
The ice making system 200 may, as discussed herein, be in thermal communication with freezer chamber 124. In some exemplary embodiments, the ice making chamber 202 may not be in fluid communication with the freezer chamber 124. In other words, in such embodiments, the ice making chamber 202 may be isolated from the freezer chamber. For example, in such embodiments, thermal communication between ice making system 200 and freezer evaporator 170 may be by convection, i.e., air flow, from evaporator 170 to a heat exchanger 206 and by conduction from heat exchanger 206 to the mold body 208 in the ice making chamber 202. Providing cold air from the evaporator 170 to heat exchanger 206 rather than directly into ice making chamber 202 may permit more efficient thermal energy transfer from the cold air to the ice maker mold body 208. That is, rather than circulating cold air above the mold body 208, impinging a flow of cold air on the heat exchanger 206 which is in direct conductive thermal communication with the mold body 208 allows the cold air to more directly influence the mold body 208. As a result, the ice making system 200 may be more efficient and provide faster ice production.
In general, the ice making system 200 and various components thereof, may be provided with insulation 164 (
Turning back to
In some exemplary embodiments, an access door—e.g., icebox door 166 (
In some embodiments, for example as illustrated in
Various components may be utilized to facilitate the temperature variance between ice making system 200 and fresh food chamber 122. For example, in one embodiment, ice making system 200 may be in fluid communication with the freezer chamber 124. As shown, e.g., in
The ice making system 200 may be in convective thermal communication with the freezer chamber 124. In some embodiments, such convective thermal communication may be provided by the circulation system 170 which circulates cold air from the freezer chamber 124 to the ice making system 200 and in particular to a heat exchanger 206 thereof, which heat exchanger 206 may be positioned at the heat exchange opening 162 of the icebox compartment 160. In some embodiments, the heat exchanger 206 does not include or employ liquid refrigerant, the circulation of cold air alone cools the heat exchanger 206.
In some exemplary embodiments, the ice maker 200 may include a mold body 208 configured for receiving liquid water and forming ice in the mold body 208. The mold body 208 may be so configured by forming the mold body 208 with a series of impressions or recesses which receive liquid water therein and hold the liquid water at least until the liquid water freezes. In some exemplary embodiments, the ice maker 200 may include features for harvesting the ice from the mold body 208 once it has been formed, as well as features for storing and/or dispensing the harvested ice. As described above, the ice maker 200 may include a storage bin 204 within the icebox compartment 160, e.g., below the mold body 208. The mold body 208 may be in thermal communication with a harvest heater 210, such as an electric resistance heating element. The harvest heater 210 may be positioned near a bottom portion of the mold body 208. For example, as illustrated in
In some exemplary embodiments, such as is illustrated in
In some exemplary embodiments, the icebox compartment 160 may be a sealed compartment, e.g., the icebox compartment 160 may be generally airtight. In such embodiments, the heat exchanger 206 and the drain conduit 224 may occlude air flow through the heat exchange opening 162. As illustrated in, e.g.,
Also in such exemplary embodiments where the compartment 160 is a sealed icebox compartment 160, when a compartment door 166 and/or dispenser 142 is or are provided, the compartment door 166 and/or dispenser 142 may be configured to sealingly engage with corresponding portions of the sealed icebox compartment 160 when in a closed position to maintain airtightness of the sealed icebox compartment 160, e.g., seals or gaskets as are generally known in the art may be provided on or in association with the compartment door 166 and/or dispenser 142.
Further, in some exemplary embodiments wherein the icebox compartment is sealed against outside air, an internal air circulation conduit may be included for providing air circulation within the sealed icebox compartment 160. Such air circulation conduit may advantageously help to provide a more even temperature distribution throughout the icebox compartment 160. In some exemplary embodiments, e.g., as illustrated in
As noted above, a harvest heater 210 may be provided. In such exemplary embodiments, the harvest heater 210 may be configured to at least partially defrost the mold body 208 and the heat exchanger 206. Thus, harvest heater 210 may be operable to heat and thereby defrost the mold body 208 and the heat exchanger 206. In such exemplary embodiments, the defrost conduit 212 may be configured to convey frost melt water generated from the mold body 208 to the drain conduit 224. Similarly, the defrost conduit 212 may convey frost melt water generated from the heat exchanger 206 to the drain conduit 224.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
7392665 | Lee et al. | Jul 2008 | B2 |
7681406 | Cushman | Mar 2010 | B2 |
8136367 | Froelicher et al. | Mar 2012 | B2 |
8397532 | Mitchell et al. | Mar 2013 | B2 |
8794014 | Kulkarni et al. | Aug 2014 | B2 |
8833093 | Tarr | Sep 2014 | B2 |
9115922 | Boarman | Aug 2015 | B2 |
9175893 | Junge et al. | Nov 2015 | B2 |
9200828 | Mitchell | Dec 2015 | B2 |
9303913 | Ha | Apr 2016 | B2 |
9377233 | Boehringer et al. | Jun 2016 | B2 |
9915459 | Wu | Mar 2018 | B2 |
20050210909 | Kim | Sep 2005 | A1 |
20060096310 | Lee | May 2006 | A1 |
20080148761 | Venkatakrishnan | Jun 2008 | A1 |
20080156026 | Shin | Jul 2008 | A1 |
20100126185 | Cho | May 2010 | A1 |
20100326112 | Prabhakar | Dec 2010 | A1 |
20120023997 | Jung | Feb 2012 | A1 |
20120031138 | Hunter | Feb 2012 | A1 |
20120277906 | Fassberg | Nov 2012 | A1 |
20130152617 | Oh | Jun 2013 | A1 |
20130167575 | Hong | Jul 2013 | A1 |
20130227983 | Jeong | Sep 2013 | A1 |
20140150467 | Boarman | Jun 2014 | A1 |
20140150486 | Boarman | Jun 2014 | A1 |
20140150487 | Boarman | Jun 2014 | A1 |
20140260407 | Boehringer | Sep 2014 | A1 |
20150135758 | Miller | May 2015 | A1 |
20160025399 | Miller | Jan 2016 | A1 |
20160370052 | Yang | Dec 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180142933 A1 | May 2018 | US |