The present application relates to temperature controlled railroad freight cars, and particularly to railroad freight car body structures incorporating air duct arrangements for circulation of air from a refrigeration or heating unit to various locations within a body of such a car while maximizing available cargo space.
Temperature controlled railroad boxcars are well known, and have long used mechanical refrigeration and heating units mounted on an end wall, primarily to deliver chilled air to the interior of the car. For simplicity, the term refrigeration unit will be used herein to refer to refrigeration units, heating units, or units capable of both heating and cooling. Air from a refrigeration unit is typically forced into one end of an upper plenum extending longitudinally overhead, near the roof of the car, to deliver the conditioned air throughout the car to maintain a desired temperature throughout the cargo space in the car body. Such plenums in the past have intruded down into otherwise useable cargo space more than is desired, in order to assure sufficient air flow throughout the car body. This downward projection has also made the plenum vulnerable to damage from lift trucks moving cargo within such cars.
Typically, an air circulation pattern in such a temperature-controlled car includes flow of air down from the upper plenum onto and along the sides of the cargo and the end wall of the car that is remote from the refrigeration and heating unit. Air returns along the floor to a return air intake plenum leading back up along the near end wall to the refrigeration unit.
As railroad car sizes have increased it has become increasingly difficult to ensure even distribution of air throughout a railroad freight car, as needed in order to avoid uneven cooling that could damage parts of a sensitive cargo. A factor contributing to such difficulty is the desire to provide as much useable cargo space as possible within a boxcar whose size is limited by clearance along rights-of-way where the car is intended to be used.
Another factor in the design of such railcars is the need to avoid excessive car weight, which would limit the weight of cargo that could be carried and add to the cost of fuel used in hauling the car.
In view of these factors, it is desired to provide the necessary air circulation flow and distribution through an upper plenum that is no larger than necessary, so that it takes as little as possible of the potential cargo space within a refrigerated boxcar body, is out of the way of lift truck uprights and the like, and is not unnecessarily heavy.
Along with larger cars has come the desire to use larger lift trucks to quickly load and unload such cars. Lift trucks now in such use are rated at up to 60,000 lb (27240 kilograms) per axle. It is therefore also desired to provide for such a car a floor structure that provides sufficient strength and aids efficient air circulation and thermal conduction to or from the cargo, and yet does not contribute excessive weight to the car.
The present invention provides an answer to the aforementioned need for improved distribution of conditioned air within the cargo space of a temperature-controlled railroad freight car, as defined by the claims which follow.
In particular, in one preferred embodiment of the present invention an air outlet port from a refrigeration unit extends through an opening in an end wall of a railroad freight car body at a distance beneath a ceiling height and is interconnected with an inflow end of an upper plenum extending closely along the ceiling toward an opposite end wall of the car body. A diverter extends slopingly upward, from a location near a lower side of the air outlet port of the refrigeration unit, into the inflow end of the plenum, smoothly directing a flow of air from the outlet port of the refrigeration unit into the inflow end of the upper plenum. The diverter preferably includes an upper shoulder located at the inflow end of the upper plenum, defining a most constricted part of a path for the flow of air from the refrigeration unit, and an inner margin portion of the diverter extends away from the shoulder at a gently sloping angle, allowing the flow of air to expand slightly as it enters into the inflow end of the plenum.
In a preferred embodiment of the invention, an upper deflector is also included and provides a smoothly curved concave surface defining part of the path for the flow of air. The upper deflector extends from an end wall of the car, adjacent the inlet opening, to an upper interior surface of the upper plenum, and also contributes to smooth flow of air from the refrigeration unit into the plenum.
Smooth flow of air from the refrigeration unit into the upper plenum, combined with a smooth substantially unobstructed interior shape of the upper plenum, contributes to continued smooth flow of air throughout the upper plenum over the length of the temperature-controlled car, even in a car considerably longer than previously known refrigerated cars.
The foregoing and other features of the present invention will be more readily understood upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings.
a is a sectional view taken along 11-11 in
b is a detail view at an enlarged scale of a portion of
Referring now to
Side walls 42 and end walls 44 and 46 are supported by the underframe and extend upwardly above the floor 40 to a roof 48. The subfloor 38, end walls 44, 46, side walls 42, and roof 48 are of a thermally insulating construction. The floor 40, inner faces of the side walls and end walls, a ceiling 50, and an upper plenum 52 suspended beneath the ceiling 50, define an enclosed cargo space 53. Doorway openings 54 are provided in the side walls 42, and may be closed by conventional insulated doors 56. Construction of the side walls 42 and floor 40 may be largely conventional, in connection with one aspect of the car 20.
Preferably, as may be seen with reference also to
In a preferred embodiment of the temperature-controlled railcar 20, the roof 48 is manufactured as an assembly of composite materials that can be placed atop and fastened to the end walls 44, 46 and side walls 42 as a single module during the process of assembling the car 20. A fiber-reinforced polymeric resin liner including the substantially flat ceiling panels 62 of fiber reinforced plastic is attached to the skin 57 to form an enclosed space between the skin 57 and the liner. That space is filled with poured-in-place urethane foam insulation and cured, with the roof 48 assembly held in a suitable press to maintain the required shape.
A refrigeration unit 64 is mounted on the outer side of the end wall 44 at an “A” end of the car, and a fuel tank 66 for the refrigeration unit 64 may be supported by the underframe 22 of the car beneath the refrigeration unit.
A refrigeration unit opening 68 is provided in the “A” end wall 44 to receive an inwardly directed portion of the refrigeration unit 64 and to permit air from within the cargo space 53 to enter into the refrigeration unit 64 through a lower portion of the refrigeration unit opening 68, to be chilled or heated as may be needed, and to allow the refrigerated (or heated) air from the refrigeration unit 64 to be delivered into the car for distribution as necessary within the cargo space 53. The top 70 of the refrigeration unit opening 68 is spaced downward a distance 72 such as 1 inch (2.5 cm) beneath the height of the ceiling 50. The refrigeration unit opening 68 may have a height 74 of 46 inches (116.8 cm), for example, in order to accommodate any of various commercially available refrigeration units.
An upper, or air inlet opening portion 76 of the refrigeration unit opening 68 extends down to the structure of the top 78 of a return air plenum 80 extending up from the floor 40 along the interior of the end wall 44. Air can return through the return air plenum 80 to the supply air opening 82 or intake of the refrigeration unit 64. The upper or air inlet opening portion 76 of the refrigeration unit opening 68, above the top 78 of the return air plenum 80, receives the air outlet port 84 of the refrigeration unit, from which a flow of air proceeds toward the interior of the cargo space 53 within the car body 20. The air outlet port 84 is defined by the refrigeration unit 64 and may have, for example, a height 86 of 4⅞ inches (11.9 cm) and a width 88 of 30 13/16 inches (78.1 cm) in a refrigeration unit available from the Carrier Corporation.
A general pattern of air circulation is shown by the arrows 89 in
A conduit 98 extends downwardly along the interior side of the “B” end wall 46 toward the floor 40, and passageways 100 are defined longitudinally through the floor 40 toward the “A” end beneath cargo (not shown) that may be resting on the floor 40, to complete a circulation route for air, collecting and leading the flow of air back toward the “A” end of the car body after it has absorbed heat from the cargo and from the ceiling 50, walls 42, 44, and 46, and floor 40. The return flow of air through the floor 40 makes that air available near the “A” end of the car 20 to be drawn into the refrigeration unit 64 and again chilled for circulation again within the cargo space. Air which has escaped from the upper plenum 52 through the perforations described above flows over the upper surfaces and along the side surfaces of cargo contained in the cargo space 53, and is then conducted forward within the car, along the floor 40 and at least partially through the air passageways 100, toward the “A” end. The return air plenum 80 receives the forward-flowing air from the passageways 100, or through openings 101 in the sides of the return air plenum 80, and conducts it into the supply air, or intake, opening 82 of the refrigeration unit.
The ceiling 50 is preferably adhesively attached to the underside of the roof 48 as an integral part thereof, and is preferably constructed of generally flat horizontal panels 62 of fiber reinforced polymeric resin, which can be amply stiff, are of lighter weight than previously utilized metal ceiling panels, and can be interconnected with each other in smooth joints, providing a generally smooth and flat ceiling surface as the upper interior surface of the upper plenum 52.
The bottom panels 90 of the upper plenum 52 are similarly flat and located parallel with the ceiling panels 62, providing a wide plenum with smooth interior surfaces and a smaller height than that of similarly located plenums in previously known cars. The height 102 of the upper plenum 52 is preferably less than 4 inches (10.2 cm) and more preferably is about 3 15/16 inches (10.0 cm), while the width 104 of the upper plenum 52 is preferably relatively great, to spread the flow of air over the width of the cargo space, and may, for example, be about 88 13/16 inches (225.6 cm).
In a preferred embodiment of the upper plenum 52, the bottom panels 90 of the plenum are of a stiff fiber reinforced resin sheet material having a nominal thickness of 0.075 inch (0.19 cm) and the sides 92 of the upper plenum 52 are of easily flexible urethane resin sheet material adhesively attached to the ceiling 50 and the plenum bottom panels 90. A central support web or a plurality of small support strips 106 of similar flexible material may be used to support the median portions of the plenum bottom panels 90, although the plenum bottom panels 90 are preferably rigid enough to be largely self supporting and remain substantially flat and parallel with the ceiling 50. The flexibility of the plenum sides 92 and support strips 106 permits the bottom panels 90 simply to move up if bumped by a lift truck or cargo during loading or unloading of the car, and to move back down into place undamaged when the offending item has been removed. The car 20 may be constructed to provide an interior height of 11 feet, 9 inches (3.58 m) between the floor 40 and the upper plenum 52, while remaining within the limitations of AAR Plate F and providing acceptable thermal insulation.
The conduit 98 defined along the “B” end wall 46 for downward flow of air has a cross sectional area which is smaller than that of the interior of the upper plenum. While the conduit 98, as shown in
Nevertheless, in order for the air to be distributed as evenly as is necessary throughout the interior of the cargo space 53 within the car 20, it is desired for the flow of air through the upper plenum 52 to proceed unimpeded and smoothly toward the “B” end of the car.
Because of the location of the air outlet port 84 in the refrigeration unit 64, the top of the air outlet port 84 is spaced downward from the top 70 of the refrigeration unit opening 68 in the “A” end wall 44 of the car body by a distance 109 of about 2 inches (5.1 cm). Because the height 86 of the air outlet port 84 of the refrigeration unit 64 is greater than the height 102 of the upper plenum 52, the bottom 110 of the air outlet portion 84 is thus located at a distance below the ceiling 50 and also below the plenum bottom panel 90. In order to promote the desired smooth flow through the interior of the upper plenum 52, the flow of air from the air outlet port 84 through the end wall 44 at the “A” end of the car 20 must be diverted upward to the inflow end 112 of the upper plenum 52, but diversion must be accomplished without causing turbulence that would interfere with the flow of air through the interior of the upper plenum 52 toward the opposite, or “B”, end of the car 20. Accordingly, a diverter 114 is mounted atop a transverse structural member 116 that extends across the width of the interior of the car at the top of the return air plenum 80 at the “A” end, as may be seen in
A preferred embodiment of the diverter 114 includes a narrow base flange 118 mounted upon and attached to the transverse structural member 116 and extending away from the “A” end wall 44. An upwardly sloped front face portion 120 extends from the base flange 118 toward the ceiling 50 and away from the interior face of the end wall 44 at the “A” end, at an angle 121 preferably in the range of 40°-60° and most preferably equal to about 45° to the plenum bottom panel 90. An uppermost portion of the diverter 114, at the top of the front face portion 120, defines a shoulder 122, and beyond the shoulder 122 an inner margin portion 124 extends further away from the “A” end wall 44 into the inflow end 112 of the upper plenum 52, extending away from the shoulder 122 at a gentle downward slope, such as an angle 125 in the range of 3-6 degrees and preferably of about four degrees to the plenum bottom panel 90. The shoulder 122 and the inner margin portion 124 may be considered to be a flow transition portion of the diverter 114.
A flow of air from the outlet port 84 of the refrigeration unit 64 is forced to follow the sloping front face 120 of the diverter 114 upward to and through a most restricted area, or throat, near the inflow end 112 of the upper plenum 52, at the location of the shoulder 122. The available area for flow of air into the upper plenum 52 then expands gradually along the gently sloping inner margin portion 124 toward the interior of the upper plenum 52 and the “B” end of the car 20. A blocking panel 123 aligned with each side panel 92 seals the space above the diverter 114 to the upper plenum 52 at each side.
Preferably, in addition to the diverter 114 an upper deflector panel 126 is also provided and extends generally horizontally from the interior face of the “A” end wall toward the “B” end wall from the top of the refrigeration unit opening 68 defined through the “A” end wall 44, thus at a small distance beneath the ceiling 50, to a location approximately above the interior face of the refrigeration unit 64 and the lower, front margin 128 of the diverter 114. From that location, the upper deflector 126 extends arcuately upward and away from the “A” end wall 44 toward a location on the ceiling 50 at the inflow end 112 of the upper plenum 52, in a downwardly facing, concave shape, appearing in side view in
Both the diverter 114 and the upper deflector 126 may be of fiber reinforced plastic resin sheet material, in order to minimize the weight of the car 20.
As a result of the arrangement of the diverter 114 and upper deflector 126, the air from the refrigeration unit 64, which initially flows generally horizontally from the outlet port 84, is diverted upward by the sloping front face 120 of the diverter 114. The flow of air is shaped further by the concave lower face of the upper deflector 126, and is then redirected to a horizontal flow into the inflow end 112 of the upper plenum. The flow is slightly constricted by the shoulder 122 at the top of the forward face of the diverter 114 and is thereafter allowed to expand gradually as it accelerates and proceeds along the gently sloping inner margin portion 124 of the diverter 114 as shown by the arrow 127. The air thus moves smoothly in a suppressed turbulent state in a generally horizontal direction through the upper plenum 52 toward the “B” end of the car body as it leaves the diverter 114. This construction permits an interior length of the cargo space 53 of as much as 72 feet, 3 inches (22.02 m) between the conduit 98 at the “B” end and the return plenum 80 at the “A” end.
Since the upper plenum 52 is essentially airtight near the input end 112 and for a distance toward the “B” end of the car, until the pattern of perforation is encountered, a distance 94 of about 8 feet from the end wall 44 at the “A” end of the car 20, the flow of air continues within the upper plenum 52 toward a region of gradually decreasing pressure extending toward the “B” end, created as air is exhausted from the upper plenum 52 through the perforations along the sides 92 and bottom panel 90 of the upper plenum 52 to flow over and around cargo toward the floor 40. Because the interior surfaces of the plenum 52 are generally planar and smooth, rather than being obstructed by raised joints or ribs extending transversely across the upper plenum 52 to provide stiffness as in previously utilized ceiling panels and plenum panels, the smooth flow of air continues from the “A” end to the “B” end of the car body relatively free from turbulence.
Referring to
At the top of each side wall 42 and extending longitudinally along the entire length 141 of the car body 20 is a top chord assembly 142 having an exterior structural layer 144 of sheet steel incorporating a horizontal leg, a downwardly angled diagonal leg, a small inwardly protruding L-shaped portion, and a downwardly extending leg that mates with and is parallel with outer sheet 131 of the side wall. The roof assembly 48 fits between the top chords 142 with the margins of the steel skin 57 of the roof extending above and along the horizontal portions of the top chord assemblies 142. An arcuate wall closure panel 146 extends from the top of the wall 42, 44, 46 on the interior of the car, to the ceiling panel 62 defining the bottom side of the roof structure 48, and the space between the wall closure panel 146 and the top chord outer structural member 144 is filled with insulating closed cell foam, preferably foamed in place.
The upper plenum 52 extends to the “B” end wall 46 of the car body with a uniform interior height 102 and is there interconnected to the vertical conduit 98, which carries the remainder of the air flow downward from the plenum 52 and along the interior face of the end wall 46 at the “B” end of the car body and connects the adjacent end of the upper plenum 52 to the end of the floor 40.
The floor 40, as shown also in
As mentioned briefly above, the underframe of the car is preferably of welded steel construction. The stringers 36, which may be steel I-beams, rest atop the transversely extending cross-bearers 32 and crossties 34, and extend longitudinally, spaced apart from each other and parallel with the side sills 26 and center sill 24, between the body bolsters 28 and between each body bolster 28 and the nearby end sill 41. Preferably the stringers 36, body bolsters 28, and center sill 24 all include generally horizontal top surfaces that are all substantially coplanar, and the subfloor 38, preferably of composite construction, rests atop those coplanar surfaces.
In a preferred construction of the car body, the composite subfloor 38 includes a bottom panel 156 of fiber reinforced plastic resin, 0.1 inch (2.5 mm) thick, for example, and extends horizontally and rests atop the stringers 36 and center sill 24, attached to their coplanar horizontal top surfaces by a suitable adhesive, such as Normount V2800 bonding tape.
The bottom panel 156 of the subfloor 38 rests on an upwardly offset outwardly extending steel sheet margin mount 157 which rests atop upper flanges of the side sills 26, as shown in
The fiber-reinforced plastic top panels 166 rest atop the rectangular tubes 158 and foam blocks 167 and are fastened to the rectangular tubes by adhesive bonding tape, such as Ashland Chemical 8000/6660. Each top panel 166 preferably extends the full width 148 of the interior of the car body and extends longitudinally a distance equal to a multiple of the spacing 164 of the transversely extending support tubes 158, except for a smaller panel at each end of the car body, where the floor 40 and subfloor 38 would never be subjected to as great a weight loading as where a lift truck can be located inside the car 20. At the base of each side wall 92, flexible elastic filler and seal members 168, seen best in
As may be seen in
A narrow channel 174 extends longitudinally along each side of the floor 40 at the base of the adjacent side wall 42, and the floor 40 includes sets of holes 176 aligned with each other and extending laterally inward about one-third the width of the floor 40, toward the central longitudinal axis of the car and communicating between adjacent passageways 100. The sets of holes 176 are spaced apart along the length 141 of the car at regular intervals 178, of, for example, one foot (30.5 cm), allowing air which has flowed downward within the cargo space 53 from the upper plenum 52 into the channel 174 to pass laterally inward into the parallel tubes 172 to be carried away longitudinally of the car body from the “B” end toward the “A” end of the car.
The refrigeration unit return air intake plenum 80 is connected to the floor 40 at the “A” end of the car body to carry the air upward from the floor 40 and thus back into the intake opening 82 in refrigeration unit 64. The floor 40 thus plays an integral part in forming the path for circulation of the air to maintain the desired temperature within the cargo space 53 and thus to protect the cargo carried within the car.
The tubular support structure 150 of the floor 40 is preferably constructed as a group of extruded aluminum alloy segments 180, each preferably including a pair of complete tubes 182, 184 and a pair of horizontal arms 186, 188 extending laterally from the tube 184, one at the top and one at the bottom of the extruded segment 180. The segments 180 could also be designed to have the arms extending in opposite directions away from the tubes 182, 184, or to have only a single complete tube, or more than the two complete tubes 182, 184 of the segment 180 as shown herein.
Each segment 180 thus includes three upstanding parallel load bearing side wall members 190, 192, 194 extending between and interconnecting a generally planar bottom member 196 with a generally planar top member 198 that is parallel with the bottom member. Each segment 180 may have a height of about 3 inches (76 cm), with each wall member 190, 192, 194 having a thickness of 3/16 (0.48 cm), and the top and bottom members each having a thickness of about ⅛ inch (0.32 cm), for a floor 40 designed to carry a loading of 60,000 lb per lift truck axle. The tube side wall members 190, 192, 194 are interconnected with the top and bottom members 196, 198 in smoothly radiused connection zones, making each parallel tube segment a rigid, strong structure, in which each of the upright side wall members 190, 192, 194 is a weight bearing member capable of transmitting forces between the top and bottom members 196, 198 and capable of withstanding lateral components of forces acting on the floor structure 40.
The segments 180 are designed to interlock with each other when properly placed alongside each other, so that the segments 180 lying parallel with each other can be securely integrated into a single unified floor 40. This is preferably accomplished by providing a groove 200 along an upper shoulder of each segment 180, adjacent an outer tube side wall 190, and by providing a flange 202 having a sloping outer surface, extending out from the bottom of the same tube side wall 190. At the opposite side, shown at the left of each segment in
The lower horizontal arm 188 extends a slightly smaller distance away from the adjacent tube side wall 194 than does the upper arm 186, and an upwardly sloping lip 206 is provided as the outer margin of the lower horizontal arm 188. The lip 206 fits snugly against the sloping outer surface of the flange 202 of an adjacent segment 180 when the rib is engaged with the groove of that adjacent segment 180 and the two adjacent segments are both supported on a planar surface such as the top panel 166 of the subfloor 38. As shown in
Other segments 180, for example six segments in the middle of the width of the floor 40, are closed; that is, they have no holes 176 through the tube side wall members 190, 192, 194, and each tube 172 of those parallel segments 180 forms a closed path extending from the conduit 98 at the “B” end of the car 20 to the “A” end and thence into the return air plenum 80 leading to the supply air intake 82 of the refrigeration unit 64.
Extending along the outermost elongate segment 180 along each longitudinally extending side margin of the floor 40 is a respective flanged hold-down member 208 or 210, which may also be of extruded aluminum. A first, or right side hold-down member 208 corresponds to and mates with the tube side wall 190 on the closed side of a tubular segment 180, while the other hold-down member 210 is of a different form, in order to mate appropriately with the two horizontal arms 186, 188 extending laterally from the side of a segment 180 at the opposite, or left side of the floor 40, as shown in
At the opposite, or left, side of the floor 40 as shown in
Atop the assembled group of tubular segments 180 and preferably seated in notches 228 in upper margins of the hold-down members 208, 210 are an array of top plate members 152, preferably of metal such as aluminum plate embossed or rolled with a suitable non-skid surface. Alternatively, a stainless steel top plate 152 with a suitable non-skid surface, although heavier, might be used if preferred because of its better durability. The top plates 152 are also fastened to each of the several segments 180 of the tubular support structure 150 by suitable fasteners such as blind Huck™ fasteners 220 extending through corresponding openings in the floor top plates 152 and the top members 198 of the segments 180, thus fastening together the adjacent tubular segments 180 of the floor 40 as a unified structure.
In most portions of the floor 40 adjacent ones of the top plates 152 meet along joint lines spaced apart from the interconnects between adjacent tubular segments 180. Smaller top plate sections 152′ are located adjacent the doorways 54 of the car 20, as shown in
The terms and expressions that have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/15213 | 5/13/2004 | WO | 6/28/2007 |