The present subject matter relates generally to waste disposals and, more particularly, to an electrical switch provided in association with a housing of a sink air gap for controlling the supply of power to one or more components of a secondary water supply system for a waste disposal.
Waste disposal units are typically used to process solid waste, such as food waste, garbage and/or other waste, into particulates small enough to pass through associated drain plumbing. A conventional waste disposal is configured to be mounted onto a sink drain extending downward from a corresponding sink such that water/waste discharged from the sink may be directed into the disposal. The water/waste is typically directed into a grind chamber defined above a cutting or grinding mechanism of the disposal. The grinding mechanism is coupled to a shaft of a corresponding motor to allow the grinding mechanism to be rotated at high speeds. The waste contained within the grind chamber is typically ground, shredded, cut and/or otherwise processed into small particulates as a result of the rotation of the grinding mechanism relative to a stationary cutter ring extending around the outer perimeter of the grinding mechanism. The water and processed waste may then be discharged from the disposal and transmitted through the associated plumbing.
Typically, when a waste disposal is operating, water is supplied to the disposal via the faucet of the associated sink. Unfortunately, users often forget to turn on the water when operating the waste disposal, leading to dry operation (also referred to as dry running) of the disposal. Such dry operation increases the likelihood of damage occurring to one or more of the disposal components, thereby potentially reducing the operational life of the waste disposal. Moreover, even when the water is turned on during operation of a waste disposal, the amount of water received within the disposal may be insufficient to completely flush out the disposal. As a result, a significant amount of the processed waste may remain within the disposal after it is turned off. Such a build-up of processed waste within the disposal may often produce an undesirable odor and/or lead to performance issues.
Accordingly, a system for supplying water to a secondary inlet of a waste disposal for cleaning the disposal and/or for preventing dry operation of the disposal would be welcomed in the technology. Moreover, when using the disclosed system, it may be desirable to provide a conveniently located electrical switch to allow for the supply of power to one or more of the various system components to be turned on and off easily and efficiently by a user of the system.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present subject matter is directed to a system including a waste disposal having a disposal inlet and a disposal conduit in fluid communication with the waste disposal. The disposal conduit may include an inlet end and an outlet end, with the outlet end being fluidly connected to the disposal inlet of the waste disposal. The system may also include at least one supply conduit in fluid communication with a water supply. The supply conduit may include a discharge end spaced apart from the inlet end of the disposal conduit such that an air gap is defined between the disposal conduit and the supply conduit. In addition, the system may include a housing at least partially surrounding the air gap and an air gap switch provided in association with the housing. The air gap switch may be configured to control a supply of power to the waste disposal such that actuation of the air gap switch turns the supply of power to the waste disposal on and off
In another aspect, the present subject matter is directed to a water supply system for a waste disposal. The water supply system may generally include a first supply conduit configured to be in fluid communication with a first water supply and a second supply conduit configured to be in fluid communication with a second water supply. The first supply conduit may include a first discharge end and the second supply conduit may include a second discharge end. The system may also include a disposal conduit in fluid communication with the first and second supply conduits. The disposal conduit may include an inlet end and an outlet end. The disposal conduit may also be spaced apart from the first and second conduits such that an air gap is defined between the inlet end and the first and second discharge ends, wherein the inlet end is configured to receive water expelled from the first and second supply conduits via the first and second discharge ends. In addition, the system may include a valve provided in operative association with the second supply conduit. The valve may be configured to control the flow of water from the second water supply through the second supply conduit. Moreover, the system may include a housing at least partially surrounding the air gap and an air gap switch provided in association with the housing. The air gap switch being configured to control a supply of power to the waste disposal and the valve such that actuation of the air gap switch turns the supply of power to the waste disposal and the valve on and off. The outlet end of the disposal conduit may be configured to be in fluid communication with a disposal inlet of the waste disposal such that, when the valve is powered via actuation of the air gap switch, water flows from the second supply conduit into the disposal conduit via the air gap and is subsequently received within the waste disposal.
In a further aspect, the present subject matter is directed to a system including an electrical component, a first conduit extending between an inlet end and an outlet end and a second conduit in fluid communication with the first conduit. The second conduit may include a discharge end spaced apart from the inlet end of the first conduit such that an air gap is defined between the first and second conduits. In addition, the system may include a housing at least partially surrounding the air gap and an air gap switch provided in association with the housing. The air gap switch may be configured to control a supply of power to the electrical component such that actuation of the air gap switch turns the supply of power to the electrical component on and off.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
In general, the present subject matter is directed to systems and related methods for enhancing the operation and/or increasing the operational life of a waste disposal. Specifically, in several embodiments, the present subject matter is directed to a water supply system for directing a secondary supply of water into a waste disposal. For instance, as will be described below, the water supply system may include first and second supply conduits in fluid communication with a disposal conduit via a sink air gap, with the disposal conduit being connected, in turn, to a secondary inlet of the waste disposal. In such an embodiment, the first supply conduit may be connected to an outlet of an associated dishwasher to allow water (and, potentially, food waste) expelled from the dishwasher to flow through the first supply conduit and subsequently be directed into the disposal conduit (via the air gap) for supplying such water to the waste disposal. In addition, the second supply conduit may be in fluid communication with a separate water source (e.g., by being connected to a water source upstream of the dishwater) to allow a secondary supply of water to be directed through the second supply conduit and into the disposal conduit (via the air gap) for supplying a separate or secondary flow of water to the waste disposal. Moreover, a suitable valve may be provided in operative association with the second supply conduit for controlling the supply of water through such conduit.
As will be described below, by allowing for a separate or secondary flow of water to be provided to a waste disposal (i.e., beyond the flow of water provided during operation of the dishwasher), numerous operating advantages may be provided to the waste disposal. Specifically, the secondary flow of water may be provided to prevent dry operation of the disposal, thereby avoiding the potential damage that may otherwise occur to various components of the disposal during such operation. In addition, the secondary flow of water may serve as a means for cleaning or flushing out the waste disposal.
Moreover, in several embodiments, an additive fluid system may be utilized in connection with the water supply system to allow an additive fluid to be mixed into the water being directed into the waste disposal via the disposal conduit. For example, an additive fluid(s), such as a deodorant(s), odor-neutralizing agent(s), fragrance(s), disinfectant(s), decomposition agent(s) and/or the like, may be directed into the flow of water supplied through the disposal conduit via the first and/or second supply conduit. The resulting mixture may then flow through the disposal conduit may be directed into the secondary inlet of the waste disposal.
As will be described below, in several embodiments, the additive fluid may be directed into the flow of water supplied through the disposal conduit via a passively controlled valve. Specifically, in one embodiment, a portion of the disposal conduit may be configured similar to a venturi tube and may include a constrained section having a reduced cross-sectional area. In such an embodiment, the flow of water through the constrained section may create a negative or suction pressure that serves to open a valve associated with a secondary conduit in fluid communication with the disposal conduit, thereby allowing the additive fluid to flow through the secondary conduit and into the disposal conduit.
Additionally, the present subject matter is also directed to an electrical switch that may be utilized to control the supply of power to one or more of the components of the disclosed water supply system and/or the disclosed additive fluid system. In several embodiments, the switch may be coupled to, supported by and/or otherwise provided on an air gap housing associated with the above-described air gap. Such placement of the switch may allow a user of the disclosed system(s) to easily and efficiently turn on/off one or more of the various system components described herein. For example, in one embodiment, the switch may be electrically connected to both the waste disposal and the valve associated with the second supply conduit such that, upon actuation of the switch, both the disposal and the valve may be powered on simultaneously, thereby allowing the secondary supply of water to be directed into the waste disposal while it is being operated.
Referring now to the drawings,
In several embodiments, the sink 10 may be supported vertically above an under-sink storage space 24 via a countertop 26 and the associated cabinetry 12. Specifically, the sink 10 may include an outer rim 28 extending around its periphery that is configured to be engaged against the countertop 26 such that the sink bowls 14, 16 are received within a corresponding sink opening (not shown) defined in the countertop 26. The countertop 26 may, in turn, be positioned atop the cabinetry 12 such that cabinet doors 30, 32 associated with the cabinetry 12 may be utilized to access the under-sink storage space 24. For example, as shown in
Additionally, as shown in
Referring now to
In general, the waste disposal 102 may include a housing 118 configured to form an outer casing or enclosure for the various other components of the disposal 102. In general, the housing 118 may have any suitable configuration that allows it to function as a casing or enclosure for the disposal components. For instance, the housing 118 may be formed from two or more housing components configured to be coupled to one another so as to form a complete housing assembly, such as by forming the housing from a upper housing portion configured to be coupled to a lower housing portion.
In addition, the housing 118 may define one or more inlets and outlets for receiving and discharging water and/or waste. For instance, a primary inlet 120 may be defined in the housing 118 (e.g., at the top of the housing 118) for receiving water/waste discharged from the sink 110 and a secondary inlet 122 may be defined in the housing 118 for receiving water and/or waste directed through the water supply system 200. In addition, a discharge outlet 124 may be defined in the housing 118 (e.g., at and/or adjacent to the bottom of the housing 118) for discharging water and processed waste from the disposal 102.
As shown in hidden lines in
It should be appreciated that the motor 128 and the cutter plate 132 of the disclosed disposal 102 may generally have any suitable configuration known in the art that allows such components to function as described herein. For instance, in one embodiment, the motor 128 may have an outrunner or external rotor configuration. As such, the motor 128 may include a stator (not shown) and an external rotor (not shown) extending around the outer circumference of the stator. In such an embodiment, the cutter plate 132 may be formed integrally with the external rotor, such as by forming the cutter plate 132 as all or a portion of the top wall of the rotor, or the cutter plate 132 may be coupled to the rotor using any other suitable means, such as by using mechanical fasteners. In other embodiments, the motor 128 may have an internal rotor configuration and may include a shaft (not shown) extending outwardly therefrom. In such embodiments, the cuter plate 132 may be coupled to the motor shaft for rotation therewith.
It should also be appreciated that, in alternative embodiments, the waste disposal 102 may have any other suitable configuration known in the art that allows for the processing of water and/or waste flowing from a sink, dishwasher and/or any other waste/water source.
Referring now to
As indicated above, during operation of a waste disposal 102, water is typically supplied into the disposal 102 from the sink 110 via its primary inlet 120 (e.g., as indicated by arrow 112 in
As shown, the system 200 may include a first supply conduit 204 and a second supply conduit 206, with the first supply conduit 204 configured to be in fluid communication with an associated dishwasher 210 and the second supply conduit 206 configured to be in fluid communication with a separate water supply 212. Specifically, the first fluid conduit 204 may be connected directly or indirectly with an outlet (not shown) of the dishwasher 210 such that water, such as grey water, (and, potentially, food waste) expelled from the dishwasher 210 may be directed through the first supply conduit 204. Similarly, the second supply conduit 206 may be connected directly or indirectly to any suitable conduit or pipe through which water is directed without being first directed through the dishwasher 210. For example, the second supply conduit 206 may be connected directly or indirectly to the same upstream water supply pipe that provides water to the dishwasher 210 and/or to the sink 110 (
Each supply conduit 204, 206 may be configured to direct water from its respective water source to a disposal conduit 208 connected to the secondary inlet 122 of the waste disposal 102. Specifically, the disposal conduit 208 may include an inlet end 214 (
In several embodiments, each supply conduit 204, 206 may be configured to be in fluid communication with the disposal conduit 208 via an air gap 208 defined between adjacent ends of the conduits 204, 206, 208. Specifically, as shown in
It should be appreciated that the air gap 202 formed between the adjacent conduits 204, 206, 208 may generally have any suitable configuration known in the art that provides an unobstructed vertical space between the discharge ends 218, 220 of the supply conduits 204, 206 and the inlet end 214 of the disposal conduit 208. For example, as shown in the illustrated embodiment, the supply conduits 204, 206 are curled downward adjacent to their discharge ends 218, 220 such that the ends 218, 220 are oriented towards the inlet end 214 of the disposal conduit 208, thereby allowing the water discharged from each supply conduit 204, 206 to flow directly through the air gap 202 and into the disposal conduit 208. In such an embodiment, as shown in
Additionally, in several embodiments, the air gap 202 may be defined within a corresponding housing 230 configured to receive portions of the supply conduits 204, 206 and/or the disposal conduit 208. For example, as shown in
It should be appreciated that the housing 230 may generally have any suitable configuration that allows it to function as described herein. For example, in several embodiments, the housing 230 may be cylindrically shaped (e.g., as shown in
It should also be appreciated that the housing 230 may be configured to be positioned at any suitable vertical location that allows the air gap 202 to prevent back-flow into the dishwasher 210. For example, as shown in the illustrated embodiment, the housing 230 may be mounted to and/or supported by a portion of the sink 110 (e.g., along the outer rim 28 of the sink 10 shown in
Referring particularly to
In general, the water valve 250 may be configured to be normally closed such that the supply of water through the second supply conduit 206 is turned off. However, when a given trigger event occurs, the valve 250 may be opened to allow water to be supplied through the second supply conduit 206 and subsequently directed into the waste disposal 102 via the disposal conduit 208. For example, in several embodiments, the water valve 250 may be configured to be opened when the waste disposal 102 is turned on and subsequently closed when the waste disposal 102 is no longer operating. In doing so, the valve 250 may be immediately closed when the waste disposal 102 is turned off or a delay period may be implemented such that water may continue to be supplied to the waste disposal 102 for a short period of time following the disposal 102 being turned off.
It should be appreciated that any suitable electrical arrangement and/or control configuration may be provided to allow the water valve 102 to be opened and closed based on the operation of the waste disposal 102. For instance, as shown in
In other embodiments, the waste disposal 102 and the valve 250 may be connected via any suitable electrical arrangement that allows such components to be simultaneously powered on/off. Specifically, in one embodiment, the waste disposal 102 and the valve 250 may be electrically connected to a power source via a common switch or series of switches, thereby allowing the supply of power to both components to be controlled via actuation of the switch(es). For example, as will be described below with reference to
By configuring the water valve 250 to open when the waste disposal 102 is turned on, dry operation of the disposal 102 may be completely prevented. Specifically, conventional waste disposal systems rely on the user turning on the associated faucet 18 (
It should be appreciated that, as an alternative to simply activating the water valve 250 when the disposal 102 is turned on, the valve 250 may be opened and/or closed based any other suitable trigger event. For example, when the operation of the valve 250 is being controlled via a suitable controller (e.g., the internal controller 252 or the separate controller 256), the controller 252, 256 may be configured to actively control the operation of the valve 250 based on one or more sensed operating conditions of the disposal 102 and/or based on any other suitable operating parameter(s). For instance, in one embodiment, the controller 252, 256 may be configured to detect when the waste disposal 102 is being operated dry (e.g., via a suitable sensor provided within the disposal 102) and subsequently open the valve 240 to allow water to be supplied to the disposal 102 via its secondary inlet 122. In such an embodiment, the disclosed system 200 may provide increased efficiency by maintaining the valve 250 in its closed position when it is determined that water is being supplied to the waste disposal 102 via the sink 110.
In another embodiment, the controller 252, 256 may be configured to implement an automatic cleaning mode in which water is supplied to the waste disposal 102 in order to flush out or otherwise clean the disposal 102. For example, the controller 252, 256 may be communicatively coupled to a suitable sensor configured to provide an indication that the waste disposal 102 needs to be flushed out (e.g., an odor sensor or a sensor that detects waste build-up within the disposal 102). In such an embodiment, the controller 252, 256 may be configured to open the valve 250 to allow water to be directed into the disposal for cleaning purposes. Alternatively, the controller 252, 256 may include an internal clock or timing mechanism that allows the controller 252, 256 to monitor the time interval(s) between each use and/or each cleaning of the disposal 102. In such instance, the controller 252, 256 may, for example, be configured to periodically open the valve 250 (e.g., once a week) to provide a cleansing flow of water through the disposal 102.
It should be appreciated that, as used herein, the term “controller” generally refers to any suitable computing device and/or processing unit known in the art. As such, each controller described herein may, for example, include one or more processor(s) and associated memory device(s) configured to perform a variety of computer-implemented functions (e.g., performing the functions described herein). As used herein, the term “processor” refers not only to integrated circuits referred to in the art as being included in a computer, but also refers to a controller, a microcontroller, a microcomputer, a programmable logic controller (PLC), an application specific integrated circuit, and other programmable circuits. Additionally, the memory device(s) included within a given controller may generally comprise memory element(s) including, but not limited to, computer readable medium (e.g., random access memory (RAM)), computer readable non-volatile medium (e.g., a flash memory), a floppy disk, a compact disc-read only memory (CD-ROM), a magneto-optical disk (MOD), a digital versatile disc (DVD) and/or other suitable memory elements. Such memory device(s) may generally be configured to store suitable computer-readable instructions that, when implemented by the processor(s), configure the associated controller to perform various functions.
Referring now to
Additionally, as shown in
It should be appreciated that, in general, the additive fluid 262 may correspond to any suitable fluid(s) desired to be supplied into the waste disposal 102. For example, in one embodiment, the additive fluid 262 may be deodorizer or other suitable agent or solution for neutralizing odors within the disposal 102. In another embodiment, the additive fluid 262 may correspond to a fragrance or other suitable scented fluid selected to provide a desired scent for the disposal 102. In a further embodiment, the additive fluid 262 may correspond to a disinfectant or other suitable cleaning agent/solution configured to kill bacteria or otherwise provide for improved cleaning of the disposal 102. In yet another embodiment, the additive fluid 262 may correspond to a solution including a decomposition agent for assisting in slowing, halting or speeding up of the decomposition of organic compounds contained within the disposal 102 and/or within any other downstream component(s) (e.g., the septic system). Of course, the additive fluid 262 may also correspond to any suitable combination of agents, solutions, chemicals, enzymes and/or the like. For example, in one embodiment, the additive fluid 262 may correspond to a combination of a disinfectant together with an odor neutralizer or fragrance.
As shown in the
As shown in
Alternatively, the operation of the additive valve 268 may be configured to be actively controlled. For instance, in several embodiments, the additive valve 268 may correspond to an electronically controlled valve configured to be opened and closed in response to suitable control signals transmitted to the valve 268 via a suitable controller (e.g., the internal controller 252 or the separate controller 256 described above). In such embodiments, the additive valve 258 may, for example, be configured to be opened when water is flowing through the disposal conduit 208 and subsequently closed thereafter. For example, the additive valve 258 may be communicatively coupled to the same electronic controller 252, 256 and/or electrically coupled to the same circuit as the water valve 250 such that both valves 250, 268 are opened and closed simultaneously.
Referring now to
As shown in the illustrated embodiment, the air gap switch 280 corresponds to a mechanical switch that is configured to be manually toggled between ON/OFF positions for controlling the supply of power to one or more of the system component(s). However, in other embodiments, the air gap switch 280 may correspond to any other suitable switching mechanism or device known in the art, such as a capacitive touch switch, a Hall Effect switch, a Reed switch and/or the like. Similarly, the signal communications for the switch 280 may be accomplished using any suitable means, such as by using a wire(s) and an associated slip ring(s). Alternatively, the wire/slip ring may be replaced with any other suitable signal communications means, such as an optical connection, an inductive connection and/or a wireless connection (e.g., using WiFi, Bluetooth, or Near Field Communications (NFC) protocols).
Referring now to
In alternative embodiments, any other suitable electrical arrangement may be provided to allow the air gap switch 280 to directly or indirectly control the supply of power to the system component(s). For example, as an alternative to the power relay 284, any other suitable switching mechanism(s) and/or device(s) may be provided to electrically couple the various system components to the power source 282. Similarly, in another embodiment, the air gap switch 280 may be directly coupled between the system component(s) and the power source 282 for controlling the supply of power to such component(s).
In several embodiments, any number of the various components described above with reference to
It should be appreciated that, in addition to controlling the power supplied to one or more of the various system components (or as an alternative thereto), the air gap switch 280 may be configured to control the supply of power to any other suitable electrical components. For instance, the power supplied to various other electrical components located within the proximity of the sink 10, such as one or more lights, fans and/or the like, may be controlled via actuation of the air gap switch 280.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.