An air gun is a type of gun that launches projectiles pneumatically with compressed air or other compressed gases (air is already a mixture of various gases), with the gases at ambient temperatures. Such “non-firearm” guns can come in several varieties, such as pump air guns, CO2 cartridge air guns, and PCP (Pre-Charged Pneumatics) air guns, which utilize a reservoir or “tank” of compressed air or gases. A PCP air gun may be an unregulated mechanical PCP, a regulated mechanical PCP, or an electronic PCP.
A conventional firearm, by contrast, generates pressurized combustion gases chemically through exothermic oxidation of combustible propellants, such as gunpowder, which generate propulsive energy by breaking molecular bonds in an explosive production of high temperature gases. In modern firearms, the combustion gases are generally formed within a cartridge comprising the projectile inserted into a casing containing the fuel. This propulsive energy is used to launch the projectile from the casing, and thus from the firearm.
Other differences between air guns and conventional firearms can be observed as differences in pressures inside the respective barrels, muzzle energies, projectile speeds, and projectile weights that can be shot, for example. A conventional rifle chambered for a .22 long rifle (LR) cartridge fires a 40-grain bullet at approximately 1200 ft/sec. A powerful air rifle may fire a 14.3 grain pellet with a muzzle velocity of approximately 900 ft/sec. The conventional firearm generates a muzzle energy of approximately 130 ft-lbs of energy at the muzzle whereas that of the air rifle generates only about 26 ft-lbs.
The compressed gas or air of air guns currently achieves maximum pressures of 4500-5000 psi, but these high pressures are not currently in common use. On the other hand, by comparison, the lowest pressure rifle cartridges may be black powder cartridges of yesteryear and certain rimfire cartridges. Some of these lesser firearm cartridges still generate barrel pressures of 15,000-20,000 psi, or 20,000-25,000 psi for rimfire, which is a much higher pressure level than air guns can currently achieve.
Therefore, the conventional high power air rifle is still “handicapped” in comparison to conventional firearms by low operating pressure of ⅕ that of a firearm, or lower, which is its primary limitation when being compared with firearms. This limitation can restrict the type and size of projectile that an air gun can launch, based on the mass of the projectile and the limited available energy of the air gun.
The detailed description is set forth with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
For this discussion, the devices and systems illustrated in the figures are shown as having a multiplicity of components. Various implementations of devices and/or systems, as described herein, may include fewer components and remain within the scope of the disclosure. Alternately, other implementations of devices and/or systems may include additional components, or various combinations of the described components, and remain within the scope of the disclosure. Shapes and/or dimensions shown in the illustrations of the figures are for example, and other shapes and or dimensions may be used and remain within the scope of the disclosure, unless specified otherwise.
Overview
Referring to
The features described herein apply to “non-firearm” guns, such as pump air guns, guns that rely on a CO2 cartridge, PCP (Pre-Charged Pneumatics) air guns, which utilize a reservoir or “tank” of compressed air or gases, spring guns, magnetic guns, and so forth, without creating additional pressure through chemical reactions that change the chemical nature of the propellant during “firing” of the air gun. The pressurized gases may be pressurized mechanically on or off the air gun, or they may have been pressurized beforehand and stored in a removable canister.
Standard metal jacket bullets are conventionally considered too heavy for air guns, too abrasive on inner surfaces, prone to friction, and too slow for conventional air guns. The lack of relative power of air guns is compensated for by using very lightweight projectiles to get desired projectile velocities. Thus, conventional air guns generally use alternative ammunition, as shown at
Air gun diablo-shaped pellets 202 may be considered modified shot. They usually comprise a soft metal pellet with an attached skirt to reduce blow-by when they are fired and that may that assist with stabilization during flight. Some conventional air guns may also shoot BBs, darts, or arrows. Based on the shape of the typical air gun ammunition 202 and the lower energy of the compressed air, many air guns have a limited range and application. For instance, conventional air guns using ammunition 202 such as shot or diablo-shaped pellets may not be effective for hunting at desired distances.
However, example air guns 100 described herein are capable of propelling conventional metal jacket bullets 302 (for example, as shown at
The example air guns 100 enable conventional metal jacket bullets 302 to be pneumatically propelled (“shot”) from an air gun 100 without the cartridge case 304 containing gunpowder that would be present if the metal jacket bullet 302 were to be used as a round, cartridge, or ammunition in a conventional firearm. The various inventions can be used in manufacturing new air guns 100, and in retrofitting existing air guns.
Although some of the example air guns 100 described herein use reservoirs or tanks of compressed air to propel the metal-jacket bullets, these are described as representative examples for all types of “air guns” 100 that may be modified as described herein to shoot metal jacket bullets 302, including air guns 100 that use air, gas, or combinations of multiple gases (air is already a combination of gases), liquids with transitional state chemicals, magnetics, or other propulsion methods that do not use a conventional cartridge case 304 with ignition of gunpowder.
Referring to
Conventional air rifles, on the other hand, involve no chemical change of state and no burning or heat.
The one or more propellant gases of an air gun go from high pressure to a lower pressure when propelling a projectile, but the one or more gases remain the same gases chemically. Significantly, the current pressure level in the reservoir or gas source of an air gun before a projectile is shot by the air gun (which can be upwards of 3500 psi in some cases) represents the maximum pressure that can be achieved behind a projectile in a conventional air gun, because there is no explosive combustion of gunpowder to create additional pressure (no expanding gases). Accordingly, the pressure curve for a conventional air gun is characterized by diminishing gases and low or no heat, which provide the energy for propelling a projectile from the air gun. The initial lower pressures of air guns and the diminishing pressure characteristic cause lower forces, which cause more limited bullet accelerations.
Referring to
The chamber 604 is the first portion of the barrel 602, and it has an interior diameter that is sized larger than the outer diameter of the bullet 302 for easy loading of the bullet 302. The throat 606 is the section of the barrel 602 that accommodates the bullet 302, and has an interior dimension (e.g., 0.225″) just over the outer dimension of the bullet 302 (e.g., 0.223″). The bore 608 is the travel path for the bullet 302 down the length of the barrel 602, and includes the rifling lands 610 and grooves 612. The rifling lands 610 and grooves 612 are disposed down the length of the barrel 602 in a helical arrangement, in order to induce a spin on the bullet 302 as it travels down the length of the barrel 608. While the dimension from groove 612 to groove 612 (e.g., 0.225″) is just larger than the outer dimension of the bullet 302 (e.g., 0.223″), the bore 608 comprises the inside diameter of the lands 610, and has an inside dimension (e.g., 0.216″) that is smaller than the outer dimension of the bullet 302 (e.g., 0.223″).
Referring to the detail of
During a triggering event, the extreme forces resulting from the combustion process (e.g., about 50,000 to 65,000 psi) deforms the bullet 302, first by compressing the bullet 302 against the leade 804 and the rifling lands 610, and then by expanding the bullet 302 into the grooves 612 and pushing the bullet 302 into the bore 608. In the process, the lands 610 dig into the surface of the bullet 302 as the bullet is propelled down the bore 608.
Since the rifling (i.e., the lands 610 and grooves 612) spirals down the length of the barrel 602 and the lands 610 and grooves 612 bite into and hold the bullet 302, the rifling induces a spin on the bullet 302 along a central longitudinal axis of the bullet 302 when the bullet 302 travels the length of the barrel 602. The spin can give stability to the bullet 302 during its flight, due to the gyroscopic effect of the spin. However, the sudden forceful pushing of the bullet 302 onto the lands 610 and grooves 612 can cause the bullet 302 to be slightly off of center when it travels down the bore 608. Spinning on an axis that is off from the central longitudinal axis of the bullet 302 induces the bullet 302 to wobble, resulting in a less stable flight. Further, the lands 610 can remove material from the bullet 302 unequally, relative to the central longitudinal axis during engraving. This can cause the mass of the bullet 302 to be unequal relative to the central longitudinal axis, creating a center of gravity that is off the central longitudinal axis, and also inducing a yaw wobble on the spinning bullet 302. The result is a loss in accuracy and a loss in flight range.
Referring to
Example Novel Air Gun
In various implementations, novel chamber 604 geometry, barrel 602 rifling, and bore 608 surface technology described herein facilitate the ability of novel air guns 100 to use conventional metal jacket bullets 302 (as described above), which are usually deemed too heavy for air guns, too abrasive and hard on inner barrel 602 surfaces of air guns, too prone to friction to be used in air guns, and thus overall, too slow for use in conventional unmodified air guns—even without addressing the basic issue that the bore 608 dimension of a given air gun has to be manufactured to the diameter of the metal jacket bullet 302 to be used in the particular air gun.
In the implementations, to use standard metal jacket bullets 302 from common commercial sources, an example air gun 100 provides chamber 604, throat 606, bore 608, and barrel 602 features suitable for adapting the conventional metal jacket bullets 302 of firearms, to air gun use, wherein the metal jacket bullets 302 have a mass and a shape designed for the much higher pressures and temperatures of conventional firearms that use combusting gunpowder as the propellant instead of compressed gases.
In a conventional air gun, the behavior of the compressed gas in the chamber 604 and barrel 602 behind the projectile impacts how the projectile is propelled. For example, the mass, volume, and initial pressure of the compressed gas versus the mass and surface area of the projectile that the gas can push on determines much of the acceleration of the projectile. The mass of the compressed gas behind the projectile both depends on the valve and transfer port of the air gun (and in turn, may affect the action of the valve and transfer port), and changes temperature as the compressed gas expands (expanding gases absorb heat: get cold, resulting in a temperature drop). The transfer port discharge of compressed gas becomes critical when the projectile has traveled a certain distance down the barrel 602 of the air gun. The pressure peak in an air gun barrel 602 is reached early in the travel of the projectile because of the pressure-relieving effect of the projectile movement (creating more volume for the gas in the barrel 602).
Referring to
The chamber 604 is the first portion of the barrel 602, and it has an interior diameter (e.g., 0.230″) that is sized larger than the outer diameter of the bullet 302 for easy loading of the bullet 302. The throat 606 is the section of the barrel 602 that accommodates the bullet 302 prior to expelling, and can have an interior dimension that tapers from the inner dimension of the chamber 604 to the inner dimension of the bore 608, which is the outer dimension of the bullet 302 (e.g., 0.223″). The bore 608 is the travel path for the bullet 302 down the length of the barrel 602, and includes a novel sectional rifling for torque induced procession of the bullet 302, without the use of lands (and avoiding their associated drag surfaces). The sectional rifling includes a quantity of creases 1102 that are disposed down the length of the interior surface of barrel 602 in a helical arrangement, in order to induce a spin on the bullet 302 as it travels down the length of the barrel 602. The creases 1102 can extend from the interior surface of the barrel 602 approximately 0.00025″ to 0.0005″, making the bore 608 approximately equal to the outer dimension of the bullet 302 (e.g., 0.223″).
Referring to the detail of
During a triggering event, the force of the compressed gas (e.g., about 3500 to 4000 psi in some examples) pushes the bullet 302 into the bore 608 without deforming the bullet 302. (The air gun 100 does not have the energy to deform the bullet 302, and cannot compress or expand the bullet 302.) Since the bullet 302 has the same dimension as the bore 608, much less pressure is required to shoot the bullet 302 down the bore 608. In the process, the creases 1102 guide the surface of the bullet 302 as the bullet is propelled down the bore 608, inducing a spin on the bullet 302. Consequently, the surface contact between the bullet 302 and the bore 608 is reduced, as well as the associated friction.
The goal of the novel sectional rifling is to induce a spin on the bullet 302 without losing any of the limited gas pressure available. The bore 608 can be well-sealed by the bullet 302 (to reduce blow-by) since the diameter of the bullet 302 matches the interior diameter of the bore 608. A further goal is to reduce drag on the bullet 302, to make the most efficient use of the available energy of the air gun 100. This is accomplished since the creases 1102 do not include the drag surfaces of traditional lands 610 due to their unique profile shape.
In an implementation, the nodes 1400 (and thus the creases 1102) are formed of a pair of converging arc segments, which is shown at
The structure of the nodes 1400 (and thus the creases 1102) is shown in greater detail at
The number of nodes 1400 is variable. In some examples, a sectional rifling may include 3 to 5 nodes 1400. In other examples, more nodes 1400 may be present. In any case, the ratio of node 1400 width (shown as “W” in
Accordingly, the bullet 302 is not deformed or engraved or etched as it is pushed onto the rifling by the compressed gases, since no lands are used. Further, no material is removed from the bullet 302 since there is no engraving of the bullet 302. This also helps to prevent material from being deposited in the rifling or onto the bore 608. This can relieve the need for frequent cleaning of the barrel 602, depending on the material of the bullet 302.
Example novel sectional barrel rifling schemes reduce wear on the air gun barrel 602 and allow a conventional metal jacket bullet 302 to attain the velocity and spin needed for the metal jacket bullet to be practical in an air gun 100. The described sectional rifling for air guns 100 creates a good bullet-to-barrel fit around conventional metal jacket bullets 302, creating a good gas seal around the metal-jacket bullet 302 for consistent and increased muzzle velocity and better accuracy. In some implementation, the muzzle velocity can be 500 ft./sec. and greater, and often as much as 1000 ft./sec. The improved gas seal of the sectional rifling also conserves the supply reservoir (“tank”) of high-pressure gas propellant.
A metal bullet jacket typically enables higher muzzle velocity than bare lead, for example, or bullets with surfaces containing iron, without depositing traces of metal in the bore 608 of the air gun 100. The metal jackets also prevent damage to bores 608 that can occur when the outer surface of the bullet 302 is composed of hard steel or an armor-piercing material. In various embodiments, the jacket of the metal-jacketed bullets 302 is comprised of a copper or a copper alloy. In other embodiments, the bullet jacket is comprised of another metal, another metal alloy, or a composite of metal and other materials. In some cases, the bullets 302 are comprised of a solid metal or a solid metal alloy, with or without a metal jacket.
Since the sectional rifling (i.e., the creases 1102) spirals down the length of the barrel 602, the rifling induces a spin on the bullet 302 along a central longitudinal axis of the bullet 302 when the bullet 302 travels the length of the barrel 602. The spin can give stability to the bullet 302 during its flight, due to the gyroscopic effect of the spin. The self-aligning characteristic of the throat 606 (when present) and the bore 608 centers the bullet 302 when it is loaded into the bore 608 and when it travels down the bore 608. This has the effect of reducing or eliminating wobble, resulting in a more stable flight. Further, since the creases 1102 do not remove material from the bullet 302, the bullet 302 has a much greater opportunity to spin on a center of gravity that comprises the central longitudinal axis of the bullet 302. The result is improved accuracy and flight range.
Referring to
Various gain-twist or progressive rifling schemes may be incorporated into the barrel 602 of the air gun 100 for adapting metal-jacket bullets 302 to air gun use, in combination with the sectional rifling described above. These example gain-twist schemes for adapting metal jacket bullets 302 to air gun use include imparting the least friction and spin to the metal-jacket bullet 302 at the beginning of its travel, (over the first 10-12 inches, for example) when the pressure propelling the metal jacket bullet 302 is at its highest and as the metal jacket bullet 302 is gaining momentum.
In another implementation, the rifling twist of the sectional rifling increases proportionately according to a linear function as the bullet 302 travels down the barrel 602, to preserve momentum of the bullet 302 by not imparting rifling spin too early, considering the pressures at play in an air gun, and to conserve the tank reservoir of compressed air while giving maximum velocity and accuracy to the bullet 302 being propelled. For instance, gain-twist in an example air gun 100 may start out at some nominal twist-rate (x-revolutions per y-distance) and slowly increase the rate of twist, so that the twist at the muzzle-end may be as much as 2 times the starting twist, thus increasing the radial spin and the number of revolutions made by the projectile during flight.
The gain-twist sectional rifling may also be configured to spread torque evenly along the operating length of the barrel, rather than applying too much stress on any one portion of the barrel. Too much stress can happen at the breech end of the barrel with continuous-twist rifling that is too aggressive and engages the bullet too firmly at the start of the bullet's acceleration in an air gun described herein. In yet another implementation, the rifling twist of the sectional rifling increases according to a logarithmic function, or the like, as the bullet 302 travels down the barrel 602.
In some embodiments, an added lubricant or lubricating coating (e.g., Teflon, etc.) may be disposed on the interior surface of the barrel 602, including on the creases 1102 of the sectional rifling. The lubricant may be integral to the material of the barrel 602, or may be infused or impregnated into the material of the barrel 602 as well. In an implementation, a lubricant is stabilized in a porous or textured barrel material by capillary forces, forming a lubricant-impregnated interface between barrel 602 material and the metal jacket bullet 302. The use of the lubricant or lubricating coating or material is possible (and can be maintained) since there is little to no heat associated with shooting conventional bullets 302 through the air gun 100.
The example air gun barrels 602 and the special sectional rifling can be made by conventional button rifling, cut rifling, swaging, hammer forging, laser, etching, and twisting, for example. Additionally, the lack of exposure to high temperatures allows the barrel 602 to be made of a variety of materials. The example air gun barrels 602 described herein are not generally susceptible to requirements of being able to withstand high pressure and heat associated with gunpowder detonation in conventional firearms. In some embodiments, the barrel 602 may be comprised of tool steel, ferrous and nonferrous materials, or the like. In other embodiments, the barrel 602 may be comprised of brass, hydraulic tubing, or other lighter metals.
Brass alloys can also be used for example air gun barrels 602. Brass is easy to work with and has good qualities for example air gun barrel 602. Brass is easy to machine and easy to rifle. Brass particulates break away cleanly leaving a good surface, and brass provides rust resistance and does not corrode. However, brass is heavier than steel and not as strong as steel but strong enough for air gun pressures in operable thicknesses.
Barrel steel can include 4130/4140 chromium-molybdenum variety (“chrome-moly”), which can resist the wear of metal jacketed bullets 302. The addition of the alloy elements chromium, for wear, and molybdenum for toughness and strength make this alloy a good choice for longevity, but the metal can be difficult to machine. A chrome-moly barrel 602 can be used for very high-pressure air guns made possible by the inventions described herein. Otherwise chrome-moly may be overkill for lesser air gun pressures.
Stainless steel air gun barrels 602 provide corrosion and rust resistance and the main alloy constituent in this stainless steel is chromium. Chromium improves wear resistance in light of metal-jacket bullets. A variety of 1117 steel can be used, since the example air guns 100 described herein have to resist at least copper-plated metal jacket bullets 302. This steel is hard enough and machines freely. The chips break away cleanly resulting in a smooth surface. This is advantageous because the example air gun barrels 602 can be made out of solid bar stock and the bore 608 is drilled completely through the block. The drilled barrel 602 is then reamed to size before cutting the rifling. The 1117 steel polishes readily and can be hot, salt-bath blued as performed routinely for firearms.
Tubing can be machined into air gun barrels 602 in some implementations described herein, such as a low carbon 1020 tube. Cold, drawn seamless tubing can be employed, or welded tubing drawn over a mandrel. However, tubing can be difficult to machine.
In further embodiments, the barrel 602 may be comprised of ceramics, thermoset plastics, polymer composites, carbon fiber, graphene materials, or other emerging technology materials and composites. Wrapping and related methods for stiffing and stabilizing can be used. The use of some of these materials can decrease the friction within the bore 608, as well as lighten the weight of the air gun 100. Also, the use of some of these materials can make manufacturing the barrel 602 easier and/or less expensive.
Example chambers, barrel rifling, surface technology and other features for air guns described herein not only allow air guns to use metal jacket bullets, but also reduce wear and tear on the modified air gun barrel. More importantly the novel features described herein enable the example air guns to achieve higher muzzle velocities than conventional air guns, better bullet flight, and higher accuracy than conventional air guns, while using standard metal-jacket bullets made for firearms.
Representative Process
The order in which the process is described is not intended to be construed as a limitation, and any number of the described process blocks can be combined in any order to implement the process, or alternate processes. Additionally, individual blocks may be deleted from the process without departing from the spirit and scope of the subject matter described herein. Furthermore, the process can be implemented in any suitable hardware, software, firmware, or a combination thereof, without departing from the scope of the subject matter described herein.
At block 1802, the process includes providing a stock metal jacket bullet manufactured for a conventional firearm (such as the bullet 302, for example).
At block 1804, the process includes providing a non-firearm gun or air gun (such as air gun 100, for example), the non-firearm gun or air gun including: a chamber (such as chamber 604, for example) of a barrel (such as barrel 602, for example) for queuing the metal-jacket bullet for transport into a bore of the barrel (block 1806), a bore (such as bore 608, for example) of the barrel coupled to the chamber for expelling the metal jacket bullet (block 1808), and a source of compressed gas coupled to the chamber (block 1810).
At block 1812, the process includes shooting the stock metal-jacket bullet without the use of combustion at a preselected velocity (such as 500 ft./sec. or greater) with the non-firearm gun or air gun. In an implementation, the mass of the metal jacket bullet is at least 55 grains.
In an implementation, the process includes providing a sectional rifling without lands disposed within the bore and configured to impart a spin on the metal jacket bullet when the metal jacket bullet traverses a length of the bore. In various embodiments, the sectional rifling is comprised of a plurality of creases disposed in a helical arrangement along a length of the bore. A cross-sectional profile of a crease of the plurality of creases comprises a pair of arc segments oriented in a convex-outward arrangement, wherein a convex face of each arc segment faces outward toward the barrel and away from the bore, the arc segments converging to a vertex node at a peak of the crease.
Alternately, a cross-sectional profile of a crease of the plurality of creases comprises a pair of arc segments, one of the arc segments oriented in a convex-outward arrangement, wherein a convex face of the arc segment faces outward toward the barrel and away from the bore and the other arc segment oriented in a convex-inward arrangement, wherein a convex face of the other arc segment faces inward toward the bore and away from the barrel, the arc segments converging to a vertex node at a peak of the crease.
In an implementation, a ratio of a length of a section of the bore bounded by two creases to a width of a crease of the plurality of creases is higher than 50:1.
In an implementation, a cross-sectional profile of the sectional rifling is comprised of a plurality of sets (such as 3-5 sets, for example) of three intersecting arc segments.
In an implementation, the process includes not removing material from the metal-jacket bullet by the sectional rifling while the metal jacket bullet traverses the length of the bore. Alternately, the process includes not deforming or engraving the metal jacket bullet by the sectional rifling while the metal jacket bullet traverses the length of the bore.
In an implementation, the barrel is comprised of a polymer or a composite including a polymer. Alternately, the barrel is comprised of various metals or metal alloys. In one implementation, an infused lubricant, a polymer coating, or a friction reducing film is disposed at a surface of the bore.
In alternate implementations, other techniques may be included in the process in various combinations, and remain within the scope of the disclosure.
Various modifications and changes can be made to the embodiments presented herein without departing from the broader spirit and scope of the disclosure. For example, features or aspects of any of the embodiments can be applied in combination with any other of the embodiments or in place of counterpart features or aspects thereof. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
While the present disclosure has been disclosed with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations there from. It is intended that the appended claims cover such modifications and variations as fall within the true spirit and scope of the disclosure.
Although various implementations and examples are discussed herein, further implementations and examples may be possible by combining the features and elements of individual implementations and examples.
Although the implementations of the disclosure have been described in language specific to structural features and/or methodological acts, it is to be understood that the implementations are not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as representative forms of implementing the claims.
This application claims the benefit under 35 U.S.C. § 119(e)(1) of U.S. Provisional Application No. 62/862,162, filed Jun. 17, 2019, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
119846 | Henry | Oct 1871 | A |
587801 | Durnford | Aug 1897 | A |
2872846 | Crozier | Feb 1959 | A |
2982550 | Francis | May 1961 | A |
3111121 | Baggott | Nov 1963 | A |
3345949 | Nosler | Oct 1967 | A |
3673916 | Wittholz | Jul 1972 | A |
3780465 | Polcha | Dec 1973 | A |
4697523 | Saxby | Oct 1987 | A |
5078117 | Cover | Jan 1992 | A |
5196637 | Petrovich | Mar 1993 | A |
5700972 | Saxby | Dec 1997 | A |
6619278 | Lin | Sep 2003 | B1 |
7197986 | Calkins | Apr 2007 | B1 |
7337774 | Webb | Mar 2008 | B2 |
7412975 | Dillon, Jr. | Aug 2008 | B2 |
7954413 | Koth | Jun 2011 | B2 |
8191480 | Mcaninch | Jun 2012 | B2 |
8291632 | Taylor | Oct 2012 | B2 |
8322329 | Sikes | Dec 2012 | B1 |
8393273 | Weeks | Mar 2013 | B2 |
9046333 | Masinelli | Jun 2015 | B2 |
9068789 | Glock | Jun 2015 | B2 |
9234716 | Feddersen | Jan 2016 | B2 |
9404719 | Bowers | Aug 2016 | B1 |
9631890 | Tseng | Apr 2017 | B2 |
10119780 | Bergeron | Nov 2018 | B1 |
10782107 | Dindl | Sep 2020 | B1 |
10883785 | Rophael | Jan 2021 | B1 |
10890399 | Gardner, Jr. | Jan 2021 | B2 |
11009313 | DiBlasio | May 2021 | B2 |
20040031382 | Ogram | Feb 2004 | A1 |
20060180134 | Llluzzi | Aug 2006 | A1 |
20120180772 | St. Phillips | Jul 2012 | A1 |
20150013656 | Priestley | Jan 2015 | A1 |
20150316345 | Brahler, II | Nov 2015 | A1 |
20160209146 | Smith | Jul 2016 | A1 |
20200003514 | Gardner, Jr. | Jan 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20210231403 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62862162 | Jun 2019 | US |