The present invention generally relates to turbocharged vehicles and more particularly to a device for secondary combustion in a vehicle exhaust system, the intended purpose of which is to provide heat for regeneration of catalyst and/or incineration of deposits in a particle trap. The device of the present invention is capable of being operated completely independent of engine operation, and is particularly suitable for turbocharged diesel-powered vehicles.
Turbochargers are commonly used to significantly increase the power of an internal combustion engine or a diesel engine in a vehicle. A typical problem that exists with the use of turbochargers is the increase of exhaust emissions comprising of particulate matter (PM), hydrocarbons (HC) and oxides of nitrogen (NOx). Many diesel engines are being developed with aftertreatment systems to reduce emissions of PM, HC and NOx.
These systems often include downstream filters and traps to store the unwanted by-products of combustion until a regeneration cycle can be initiated. A regeneration cycle is a process in which excess emissions of PM, HC, and NOx are “burned off.” Regeneration cycles typically require a specific temperature range and/or exhaust gas oxygen concentration to be effective, and operate for extended periods of time. Typically, during normal operating conditions, i.e., when the engine has been running to generate enough heat and is operating at a high enough speed, the amount of heat and oxygen necessary to combust the excess exhaust emissions is provided and the excess exhaust emissions will automatically combust, or burn off. Combustion of these excess exhaust emissions is important because build-up of PM, HC, and NOx can block the flow of exhaust gas, thus building up pressure in the exhaust line and affecting engine performance.
One difficulty with the requirements of a specific temperature range and oxygen concentration occurs during vehicle start up, e.g., when the engine has not reached its normal operating temperature, and another occurs during low-speed operation, such as when the vehicle is at a stop light and air flow through the system is not high enough to allow for the proper amount of oxygen to be present to combust the excess emissions automatically. During these types of conditions, the excess emissions can build up in the filter or trap.
Accordingly, there exists a need for a new and improved air handling system for a turbocharger system for a vehicle.
The present invention is an air handling system for a turbocharger and control system based strategy to control exhaust gas filters for aftertreatment regeneration.
The turbocharger-based regeneration system of the present invention uses variable turbine geometry (VTG) and a compressor flow control valve to drive pressurized intake air into the exhaust. The oxygen rich exhaust gas can then be mixed with fuel and combusted, increasing its temperature to the point where the filter regenerates and the PM is combusted as well. Variable turbine geometry is used to increase, compressor discharge pressure under any engine speed and load conditions. The excess compressor pressure and flow are diverted into the exhaust gas system upstream of the particulate filter. A variable orifice on the discharge side of the compressor regulates the volume flow and maintains the required engine intake manifold conditions. Transient operation of the engine during regeneration is accomplished through a closed-loop control of the VTG mechanism and compressor discharge orifice to maintain engine load and exhaust gas temperature.
The present invention is an air handling system with aftertreatment for an exhaust gas turbocharger for eliminating excess particulate matter having an intake manifold for introducing air into the engine, an exhaust manifold for removing the exhaust gases away from the engine, a turbine which receives the exhaust gases from the exhaust manifold, and a compressor for receiving, compressing, and forcing air into an intake line. The present invention also includes a filter located in an exhaust gas conduit for capturing excess exhaust gas particulate matter in the exhaust gases, a fuel source connected to a fuel pump through the use of a fuel line, and an ignition source positioned in a relationship with the fuel source such that the ignition source can ignite the fuel introduced into the exhaust gas conduit from the fuel source. A bleed valve is mounted inside the intake pipeline and connected to the exhaust gas conduit which introduces fresh air from the intake pipeline into the exhaust gas conduit to mix with the fuel introduced by the fuel source. Once the fresh air and fuel are mixed inside the exhaust gas conduit, the ignition source creates a spark, producing a combustion flame, burning off the exhaust gas particulate matter that has accumulated on the filter.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The FIGURE is a diagram of an exhaust gas aftertreatment system, according to the present invention.
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to the FIGURE, an air handling system 10 is generally shown with aftertreatment for an exhaust gas turbocharger for use in an internal combustion engine. The engine 12 includes an intake manifold 14 and an exhaust manifold 16 for conducting exhaust gas emissions away from the engine 12. The exhaust manifold 16 is operably associated with a turbocharger, generally shown at 18, having an actuator 19 and a turbine 20 which receives the exhaust gases from the exhaust manifold 16. The turbine 20 can be a variable turbine geometry (VTG) turbine having an actuator 19 connected to the turbine 20 by a link 21. The turbine 20 having variable turbine geometry can be of any type. The VTG turbine 20 is controlled by the actuator 19 and the link 20. As the turbine 20 rotates from the exhaust gas flow the turbine 20 powers a compressor 22. The compressor 22 receives, compresses, and forces fresh air through the bleed valve 24.
The present invention also includes an ignition source, which in this case is an igniter 26 for producing a spark. The igniter 26 is located in proximity to a fuel source, or fuel injector 28. Both the igniter 26 and the fuel injector 28 are operably associated with a filter 30. The filter 30 captures excess exhaust gas emissions such as particulate matter (PM) that has not burned off during the normal operation of the engine 12. The filter 30 is located inside a muffler 32. The muffler 32 delivers the exhaust gas into the atmosphere.
The present invention also includes a fuel pump 34, for delivering fuel to the fuel injector 28, and is controlled by the vehicle's electronic control unit (ECU) 36. The bleed valve 24 is located in an intake conduit 38, and can divert some or all of the compressed fresh air from the compressor 22 into the intake manifold 14. The fuel injector 28 and the fuel pump 34 are connected by a fuel line 40, in which the fuel pump 34 delivers fuel to the fuel injector 28 when commanded to do so by the ECU 36. The igniter 26 and the fuel injector 28 are located inside of an exhaust gas conduit 42. Exhaust gas flows out of the engine 12, is collected by the exhaust manifold 16, and fed through the turbine 20 and into the exhaust gas conduit 42. The exhaust gas then flows into the muffler 32 where the filter 30 collects any exhaust gas PM that did not burn off when combusted in the engine 12.
Under normal operation of the engine 12, fuel is injected into the engine by the fuel pump 34. The fuel pump 34 is controlled by the electronic control unit (ECU) 36. The ECU 36 also controls the aftertreatement system by monitoring the condition of the muffler 32, the filter 30, and the fuel injector 28. Monitoring the fuel injector 28 can be accomplished by using a fuel pressure regulator (not shown) for monitoring the correct fuel pressure going into the engine 10 or the injector 28.
The igniter 26 can be a spark plug or some other type of device which can produce the necessary spark to ignite the air-fuel mixture in the combustion chamber. As fuel is injected into the exhaust gas conduit 42, the turbulence of the hot exhaust gases exiting the turbine 20 disperses the fuel inside the exhaust gas conduit 42. Fresh air is introduced into the exhaust gas conduit 42 by bleed valve 24. The bleed valve 24 is located in connection with conduit 38. Conduit 38 delivers compressed air from the compressor 22 to intake manifold 14. When the bleed valve 24 is opened, fresh air is diverted inside the conduit 38 into exhaust gas conduit 42. The swirling air-fuel mixture is ignited within the exhaust gas conduit 42, thereby producing a combustion flame. The result is the combustion flame increases the temperature of the exhaust gases flowing toward the filter 30 located inside the muffler 32, causing any excess exhaust emissions to combust.
The filter 30 may be comprised of ceramic material to withstand the severe heat of the exhaust gases, or may be comprised of some other high-temperature resistant material capable of collecting PM contained in the exhaust gas.
The ECU 36 also preferably has control over the operation of the regeneration cycle in the aftertreatment system. The volume of excess exhaust emissions may be determined by reading the pressure differential on each side of the filter 30. For instance, a pressure sensor can be placed upstream of the filter 30, as well as downstream of the filter 30, and the pressure differential can be measured between the two sensors. If the pressure differential reaches a certain predetermined value such that the amount of exhaust emissions begins to affect the performance of the engine 12, the ECU 36 will activate the fuel injector 28 and the igniter 26 to produce the combustion flame, thus causing any excess exhaust emissions that have built up on the filter 30, such as PM, to combust and burn off. Once the excess emissions have burned off, the ECU 36 will read that the pressure change across the filter 30 is acceptable, and de-activate the fuel injector 28 and the igniter 26. It should be noted that instead of reading the pressure drop across the filter 30, thermocouples or some other temperature reading devices could be used to sense the change in temperature across the filter 30. Because the combustion flame increases the exhaust gas temperature, once the temperature is similar on both sides of the filter 30, the exhaust gas will be hot enough to burn off any excess exhaust emissions that may have accumulated on the filter 30.
In operation, the exhaust gas flows from the engine 12, and into the exhaust manifold 16. The exhaust gas pressure then begins to activate the turbine 20, which in turn drives compressor 22. After the exhaust gases flow out of the turbine 20, they flow through the exhaust gas conduit 42, and then into the muffler 32. As the exhausts gases flow through the muffler 32, the filter 30 captures any excess exhaust emissions, such as PM, that did not burn off upon combustion in the engine 12.
Under normal operating conditions, when the exhaust gas is hot enough, the PM will bum off, i.e. combust, because of the heat from the exhaust gas. When the exhaust gas temperature is not high enough to burn off the excess PM, the PM will build up on the filter 30. This build up causes a pressure build up, or backpressure, of the exhaust flow gases in the exhaust gas conduit 42. The ECU 36 reads the pressure change across the filter 30. If the pressure reaches a certain predetermined value, the ECU 36 triggers the activation of the fuel injector 28 and the igniter 26. PM is burned off by the fuel injector 28 injecting fuel into the exhaust gas conduit 28. As this occurs, bleed valve 24 opens up, allowing for fresh air to flow into the exhaust gas conduit 42. With air and fuel in the exhaust gas conduit 42, the igniter 26 introduces a spark, which ignites the air-fuel mixture, burning off any excess PM that has built up on the filter 30, eliminating any backpressure resulting from the PM buildup inside the muffler 32. The pressure reading by the ECU 36 can be independent of engine operating conditions. The ECU 36 can also be programmed to activate the aftertreatment system at a specified time interval, with the specified time interval being the maximum allowable time interval between activations.
The igniter 26 can be powered by the vehicle battery, which is typically 12 volts, or it can be powered by some other device capable of providing an electric current to the igniter 26, such as a separate battery. Once the aftertreatment cycle is started, the igniter 26 can be deactivated, and the combustion flame will remain continuous as long as the fuel injector 28 continues to supply fuel into the exhaust gas conduit 42. Once the aftertreatment cycle is completed, the fuel injector 28 is deactivated, and the bleed valve 24 is closed, such that all the fresh air is directed into the intake manifold 14.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/738,158, filed Nov. 18, 2005.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/044106 | 11/14/2006 | WO | 00 | 5/5/2009 |
Number | Date | Country | |
---|---|---|---|
60738158 | Nov 2005 | US |