Air handling unit with a canopy thereover for use with a data center and method of using the same

Information

  • Patent Grant
  • 10888034
  • Patent Number
    10,888,034
  • Date Filed
    Monday, February 13, 2017
    7 years ago
  • Date Issued
    Tuesday, January 5, 2021
    3 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • McAllister; Steven B
    • Probst; Samantha A
    Agents
    • Miller; Chad W.
    • Everage; Kevin D.
Abstract
Described herein is an air handling unit that includes canopies for compressor fans and exhaust fans located on a top thereof, which canopies provide for noise abatement and a canopy to assist in keeping precipitation out. The canopies further include louvers that can be controlled to provide for even further noise abatement and precipitation control.
Description
BACKGROUND

Field of the Art


The present disclosure relates to air handling units disposed external to a facility.


Background


Data centers/server co-location facilities are well-known. In such facilities, rows of electronics equipment, such as servers, typically owned by different entities, are stored. In many facilities, cabinets are used in which different electronics equipment is stored, so that only the owners of that equipment, and potentially the facility operator, have access therein. In many instances, the owner of the facilities manages the installation and removal of servers within the facility, and is responsible for maintaining utility services that are needed for the servers to operate properly. These utility services typically include providing electrical power for operation of the servers, providing telecommunications ports that allow the servers to connect to transmission grids that are typically owned by telecommunication carriers, and providing air-conditioning services that maintain temperatures in the facility at sufficiently low levels for reliable operation.


U.S. Pat. No. 8,523,653, assigned to the same assignee and for which this application is a continuation-in-part, describes a data center that includes a plurality of external air handling units in which each external air handling unit includes both an evaporator unit and a condenser unit, which units are located in a standardized, accessible and relatively convenient positions relative to the facility should any of the units need to be accessed and/or removed for repair or replacement.


This present application uses the teachings provided in the above-noted related utility applications and provisional applications, and adds certain improvements as further described herein.


SUMMARY

Described herein is a system with improved air handling units, in which each of the air handling units contains a canopy thereover.


In one aspect is provided a facility with a plurality of air handling units that are each disposed on only one side external wall of a facility, with the canopy including a canopy that diverts noise back toward the facility.


In another aspect, the air handling units further include a configurable louver system within the canopy that is controllable to further provide for (1) further reducing noise emissions from the air handling unit, and particularly exhaust fans that expel heated air into the external environment as well as compressor fans that assist in expelling heat from a compressor coolant; and (2) further reducing precipitation from entering into the air handling unit through the canopy.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects and features of the present invention will become apparent to those of ordinary skill in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures, wherein:



FIG. 1(a) illustrates a top view of a data center or co-location facility according to U.S. Pat. No. 8,523,653.



FIGS. 1(b)
1-2 illustrate cut-away perspective views of an exterior and interior portion of the data center or co-location facility according to U.S. Pat. No. 8,523,653.



FIGS. 2A-E illustrates an air handling unit according to U.S. Pat. No. 8,523,653.



FIG. 3 illustrates a control system according to U.S. Pat. No. 8,523,653.



FIG. 4 illustrates a side view of a canopy used with an air handling unit according to an embodiment described herein.



FIG. 5 includes a block diagram of a control system used with an air handling unit according to an embodiment described herein.



FIG. 6 illustrates a perspective view of the frame of the canopy, and the louvers associated therewith, according to embodiments described herein.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In one aspect, the embodiments herein are directed to an overall data management center, including the building itself, interior aspects of the building, as well as air handling equipment purposefully located outside yet in close proximity to the building, which air handling equipment is used for purposes of providing both efficient building cooling, as described further herein.



FIG. 1(a) illustrates a top view of a portion of a data center or co-location facility 580 according to according to U.S. Pat. No. 8,523,653. In this embodiment, unlike the embodiment shown in FIG. 1(a)-(c) of the '653 patent, the condenser air conditioning units 800 and heat expulsion chamber 900 are all disposed outside of the exterior walls 582 of the facility, as will be described further herein. There is also additional equipment disposed outside of the exterior walls 582, including evaporation units 591 that feed cooled water along lines 592 to the air conditioning units 800 as described further herein, as well as backup diesel generators 594 for supplying backup power along a transmission line 596 in the case of power outage from remotely supplied power on the national power grid.



FIG. 1(b)
1 illustrates a cut-away perspective view of an exterior and interior portion (with a 90° rotation for illustrative purposes of the interior portion) of the data center or co-location facility 580, with the exterior wall 582 being explicitly illustrated. Shown are two of the cabinet clusters 590-1A and 590-2A, and the corresponding hot air area containment chambers 210 and cold air ducts 310, which are respectively connected to the warm exhaust outlets 240-0 and cold duct inlets 310-I. The warm exhaust outlets 240-0 and cold duct inlets 310-I connect to heat expulsion chamber 900 and condenser units 800, respectively.



FIG. 1(b)
2 provides a slightly varied embodiment, in which the cold duct inlets 310-I and warm exhaust outlets 240-0 are each at the same level as the condenser units 800 and heat expulsion chamber 900, respectively, and the warm exhaust outlets 240-0 contain a 90° angled area, which allows for better hot air flow into the heat expulsion chambers 900.


Within the facility there are provided distribution areas 584 and 588, as shown in FIG. 1(a), as well as data center equipment areas 586, which equipment areas 586 each contain an array of cabinet clusters 590 (shown in one of the rows as cabinet clusters 590-1, 590-2, 590-3 . . . 590-N), since within each cabinet cluster 590, various cabinets 110 containing different electronic equipment are disposed in rows, thereby allowing each cabinet cluster 590 to be locked, as well as the cabinets 110 within the cabinet cluster 590.


As is illustrated in FIGS. 1(a) and 5(b)1-2, one condenser unit 800 is paired with one heat expulsion chamber 900, and each are preferably independently movable. As is further illustrated, the condenser units 800 are built to a size standard that allows for transport along US state and interstate highways. Further, the heat expulsion chamber 900 is preferably sized smaller than the condenser unit 800, but still having dimensions that allow for transport using a semi-trailer. When transported to the facility 500, the condenser unit 800 is first placed into position, as shown here on posts 588, but other platforms can also be used. As shown in this embodiment, the heat expulsion chamber unit 900 is placed over the condenser unit 800, though other placements, such as adjacent or below, are also possible. Connections of power conduit, miscellaneous cabling, and water needed for proper operation of the condenser units 800 and expulsion chamber 900 is preferably made using easily attachable and detachable components.


With this configuration, the units 800 and 900 are located in standardized, accessible and relatively convenient positions relative to the facility 580 should any of the units 800/900 need to be accessed and/or removed for repair or replacement. Further, these units 800/900 are themselves created using an intentionally transportable design.



FIGS. 2A-2E provide further details regarding the condenser unit 800 and its paired heat expulsion chamber 900. In particular, as shown, the air conditioning apparatus includes the condenser unit 800 and its paired heat expulsion chamber 900. The heat expulsion chamber 900 receives heated air, and emits vented air, and the vented air is released into the external environment, while the condenser unit 800 emits cooled air.


The heat exchange unit 900 contains an exhaust fan 910, controlled by a VFD fan control and I/O signals block 1330 shown in FIG. 3, that emits heat from the heated air as the vented air, thereby allowing return air to pass through a return damper 920, which return damper 920 has a return damper actuator associated therewith.


The condenser unit 800 includes an outside air inlet 810, and has associated an outside air damper 812, thereby allowing outside air to pass therein. This outside air damper 812 is preferably coated with a neoprene seal to prevent pollution particles from passing through the damper 812 when in a closed position, as well as contains a spring-loaded mechanism closing lever that will automatically close the outside air damper 812 upon a removal of power, so that outside air is prevented from intake before backup generators 594 have to start, since after a power-grid power failure condition, before the back-up generators start, uninterruptable power supplies will supply building power, giving a period for the outside air damper 812 to close.


A filter chamber 820, which includes an air intake area 822 coupled to the heat expulsion unit 900 and the outside air inlet 810, is configurable, via the AHU control system 1000, described hereinafter, to receive the return air, the outside air, as well as a mixture of the return air and the outside air, the filter chamber resulting in filtered air. In a preferred implementation of the filters 824 within the filter chamber 820 are included a MERV 7 screen filter 824A with a MERV 16 bag filter 824B therebehind, which allows replacement of the screen filter 824A without replacement of the bag filter 824B, and vice-versa.


The condenser unit 800 includes an air cooling area 830 over which the filtered air passes to create the cooled air. For ease of nomenclature, all of the air within the air cooling area 830 is referred to as filtered air, and only upon emission from the condenser unit is it referred to as cooled air. That notwithstanding, it is understood that along various stages of the air cooling area 830, the filtered air will get progressively cooler in temperature.


The air cooling area 830 of the condenser unit 800 includes a direct cooling coil 840 filled with a gas for direct expansion, such as R134 gas, over which the filtered air passes, the gas being circulated through a condenser 842 disposed in another area of the condenser unit housing, but still in the external area, outside of the building.


The air cooling area 830 also includes an indirect cooling coil 850 filled with cooled water over which the filtered air passes, the cooled water being circulated through an evaporation unit 590 also disposed in the external area, via a water line 592 as shown in FIG. 5(a). Optionally, though not shown, another coil that is cooled by a chiller could be included.


Also shown in FIGS. 2A-2E is that the air cooling area also has an evaporator 860 that provides a water wall through which the filtered air can pass. An evaporator bypass 862 allows all or some of the filtered air to bypass the evaporator 860, and a bypass damper 880 is opened to allow 100% bypass of the evaporator 860, in which case the evaporator damper 890 is then fully closed. Filtered air can also be partially bypassed, or all go through the evaporator 860, depending on the percentage opening of each of the dampers 880 and 890.


Also within the air cooling area 830 is a fan 870, shown as a fan array of multiple fans, operable to push the filtered air through the air cooling area 830, as well as an outlet damper 880 controllable by an actuator and operable to control an amount of the cooled air delivered from the air cooling area 830.


As shown and mentioned previously the heat exchange unit 900 is contained within a first housing, and the condenser unit 800 is contained within a second housing.


Furthermore, and with reference to FIG. 3, overall air conditioning system for the data center 500 includes a control system 1000. The control system 1000 contains an air handling unit (AHU) and power control system computer 1100, which is operable to automatically control each of the exhaust fan 910, the return damper actuator, the outside air damper actuator, the condenser 842, the bypass damper actuator, the fan 870, and the outlet damper actuator.


Air Handling Unit Noise and Precipitation Features

With the aforementioned discussion of the air handler units, which include the heat exchange unit 900 and the condenser unit 800, FIG. 4 that sets forth improvements thereon is described, and is drawn to scale, as noted. The same numerals are used to refer to those components that are the same in the above-described figures, and it is understood that their construction and functionality is the same unless noted otherwise herein. Thus, such features and advantages that are the same are not described again, though their combination with new features and advantages described herein also provide additional benefits.


As shown, the condenser air conditioning units 800 is disposed under the heat expulsion chamber 900, just as previously described above. Further, the airflow pattern from the warm exhaust outlets 240-0 (not shown) into and through the heat expulsion chamber 900, then into and through the condenser air conditioning units 800, for outputting back to the cold duct inlets 310-I (not shown) is the same as previously described.


Altered, however, is the condenser unit 842, as well as the location of the exhaust fans 910, in the manner described herein, as these are two of the components that make the most noise within the air conditioning system 800/900, and which also can allow for external precipitation such as rain or snow to enter into the air conditioning system 800/900.


In particular, with respect to the condenser unit 842, there are the condenser compressors 842A, which are placed inside the out skin 800A of the condenser air conditioning unit 800, thereby maintaining noise from the condenser unit compressors 842A substantially within that substantially enclosed area of the air conditioning unit 800. Further, the condenser unit fans 842B are covered by a condenser canopy 1200, which will be further described.


As shown in FIG. 4, the condenser canopy 1200 includes a frame 1205 (as shown in FIG. 6) sidewalls 1210, a top plate 1220, and an air opening 1230, with a plurality of moveable louvers 1240 positioned in a parallel arrangement in order to open and close, preferably in unison, using either a motorized unit 1250A (as shown in FIG. 6) or a manual lever, described hereinafter, in order to both (1) further reduce noise emissions into the external environment, and; (2) further reduce precipitation from entering into the air handling unit through the condenser fans 842B.


Still further, the sidewalls 1210 and top plate 1220, with preferably a welded steel frame and metal shrouding components bolted thereto that together provide a canopy that maintains noise therein, which after internal reflections, a muffled version thereof is primarily emitted through the air opening 1230, as well as provide for keeping precipitation out. The presence of the moveable louvers 1240 positioned in a parallel arrangement allow for their closure either based upon the need for reduced noise or a precipitation event, as will be described further herein.


In a similar manner with respect to the exhaust fans 910, different from the previously described system, they are reconfigured so as to be upwardly facing, similar to the condenser unit fans 842B, whereas previously they were arranged in a horizontal arrangement as shown in FIG. 2C. Thus, as shown in FIG. 4, the exhaust fans 910 expel the air upwards, toward an exhaust canopy 1300, which will be further described.


The exhaust canopy 1300 includes a frame (not shown) sidewalls 1310, a top plate 1320, and an air opening 1330, with a plurality of moveable louvers 1340 positioned in a parallel arrangement in order to open and close, preferably in unison, using either a motorized unit or a manual lever, as described previously and hereinafter, in order to both (1) further reduce noise emissions into the external environment, and; (2) further reduce precipitation from entering into the air handling unit through the exhaust fans 910.


Still further, the sidewalls 1310 and top plate 1320, are again made of a welded steel frame and metal shrouding components bolted thereto, which together provide a canopy that maintains noise therein, which after internal reflections, a muffled version thereof is primarily emitted through the air opening 1330, as well as provide for keeping precipitation out. The presence of the moveable louvers 1340 positioned in a parallel arrangement allow for their closure either based upon the need for reduced noise or a precipitation event, as will be described further herein.


As mentioned, both the compressor louvers 1240 and the exhaust louvers 1340 positioned in a parallel arrangement in order to open and close, preferably in unison, with the opening and closing being performed using a motorized unit or a manual lever. These are preferably performed by a control system that implements the functions shown in FIG. 5, described hereinafter, such as the control system 1000 described with reference to FIG. 3.


With respect to noise minimization, depending on location of the facility, the louvers can be timed to close further or completely, so as to maintain a noise level within the acceptable noise standards of the community, which standards can change at different times of the day. In particular, more noise abatement, and louvers further closed, will typically occur during the evening hours, though this can change. This is shown in the FIG. 5 operational diagram 4000 as the time of day event 4010, which depending on the time of day, decision block 4020 will cause an opening signal 4030 or a closing signal 4040. It is understood that the opening signal 4020 and the closing signal 4040 can also include therein an amount of closing (10% . . . , 20% . . . 50%, . . . 100%) or a similar amount of opening.


With respect to precipitation events, the louvers can be caused to close further or completely, so as to keep precipitation out, as triggered by either an actual or a predicted storm, based upon either external remote weather inputs or precipitation sensors disposed on or near the air conditioning system 800/900 at some external location. This is shown in the FIG. 5 operational diagram 4000 as the precipitation event 4050, which depending on the amount of precipitation occurring, decision block 4060 will cause an opening signal 4070 or a closing signal 4080. It is understood that the opening signal 4070 and the closing signal 4080 can also include therein an amount of closing (10% . . . , 20% . . . 50% . . . 100%) or a similar amount of opening. The opening and closing signals for the time of day block can be used to create a predetermined noise profile, which covers different times of day, days of the week, weeks of the month, months of the year; and also can vary depending on other factors. In contrast, given the sporadic nature of weather, the opening and closing signals for the precipitation block are typically derived from real time or near-real time data, such as from the sensors described herein, which will create precipitation signals that can be used to control the opening and closing.


While in many instances the plurality of moveable louvers 1240 and the plurality of moveable louvers 1340 associated with the condenser and the exhaust, respectively are controlled to operate in the same manner, if desired, the plurality of moveable louvers 1240 can be controlled independently of the plurality of moveable louvers 1340.


It should also be noted that operationally, it is preferable not to constantly be changing the position of the louvers, and preferably having an interval during which the position is maintained constant, such as quarter hour or hour intervals, although intervals that are longer can also occur, such as 4 or 6 hours.


In another aspect, a reconciliation functional block 4085 is shown, such that if the time-of-day event block 4010 suggests an opening of the louvers, and the precipitation event block 4040 suggests a closing. A preferred rule to use is if either of the blocks suggests a closing than absent other circumstances, the closing should occur. In that vein, there is also an override function 1490, as shown, which may occur if other considerations warrant opening or closing the louvers, though a typical decision would be to open the louvers completely and allow for maximum efficiency.


It is also noted that the canopies can be oriented so that the air opening 1230 or air opening 1330 opens so that air and noise are directed away from the building (as shown in FIG. 4) or toward the building (not shown). In certain situations, given the size of the facility, orienting the air opening so air and noise are directed toward the building can be advantageous.


Although the present invention has been particularly described with reference to embodiments thereof, it should be readily apparent to those of ordinary skill in the art that various changes, modifications and substitutes are intended within the form and details thereof, without departing from the spirit and scope of the invention. Accordingly, it will be appreciated that in numerous instances some features of the invention will be employed without a corresponding use of other features. Further, those skilled in the art will understand that variations can be made in the number and arrangement of components illustrated in the above figures.

Claims
  • 1. An air conditioning system for a building requiring a high volume of cooled air, the building having a ground level floor and including an exterior wall that provides a barrier against the external environment and includes a heated air opening disposed adjacent to a return air opening, the system comprising: a warm exhaust outlet duct formed through the heated air opening;a cool air inlet duct formed through the return air opening;an air conditioning apparatus connected to and that receives heated air from the warm exhaust outlet duct, connected to and emits cooled air into the cool air inlet duct, and connected to and emits vented air into the external environment through an exhaust opening, the air conditioning apparatus disposed in the external environment, external to the exterior wall, and mounted adjacent the exterior wall on a ground level support structure, the air conditioning apparatus further including: a heat exchange unit containing an exhaust fan disposed at a top surf ace of the heat exchange unit that emits heat from the heated air as the vented air upwardly, thereby allowing return air to pass through a return opening that contains a return damper disposed therein;an exhaust canopy that covers the exhaust fan and provides an opening through which the vented air will pass to the external environment, the exhaust canopy further including a plurality of louvers, the plurality of louvers being controlled to (1) open or close to minimize noise from being passed into the external environment; and 2) open or close to reduce precipitation from falling onto the exhaust fan;a filter chamber, the filter chamber including an air intake area coupled to the heat exchange unit and an air filter, the filter chamber being configurable to receive the return air based upon a return air damper position, the filter chamber providing filtered air;a condenser unit coupled to the filter chamber that has an air cooling area over which the filtered air passes to create the cooled air, the condenser unit including: a direct cooling coil filled with a gas over which the filtered air passes, the gas being circulated through a condenser disposed within a walled area of the air conditioning apparatus;a plurality of condenser fans coupled to the direct cooling coil and disposed on a condenser unit top surf ace that emit heat from the direct cooling coil into the external environment in an upward direction, thereby allowing gas within the direct cooling coil to cool;a condenser canopy that covers the plurality of condenser fans and provides an opening through which the heat from the direct cooling coil will pass to the external environment, the condenser canopy further including a plurality of condenser louvers, the plurality of condenser louvers being controlled to (1) open or close to minimize noise from being passed into the external environment; and 2) open or close to reduce precipitation from falling onto the plurality of condenser fans;a fan operable to push the filtered air through the air cooling area and toward the cool air inlet duct; andan outlet damper operable to control an amount of the cooled air delivered from the air cooling area to the cool air inlet duct.
  • 2. The air conditioning system according to claim 1, wherein the heat exchange unit is disposed above the filter chamber and the condenser unit, and wherein the condenser unit top surface is adjacent to the top surface of the heat exchange unit.
  • 3. The air conditioning system according to claim 2 wherein the heat exchange unit is contained within a first housing, the filter chamber and the condenser unit are contained within a second housing and the return opening is disposed between the first housing and the second housing.
  • 4. The air conditioning system according to claim 3 wherein the first housing is attachable to and detachable from the second housing using bolts.
  • 5. The air conditioning system according to claim 4 wherein the first housing is disposed above the second housing.
  • 6. The air conditioning system according to claim 5, wherein the exhaust fan is disposed in a location directly above the return opening, the return opening being positioned in a floor of the first housing and a ceiling of the second housing.
  • 7. The air conditioning system according to claim 1 further including a control system, the control system operable to automatically control each of the plurality of louvers in dependence on a predetermined noise profile and precipitation signals from a precipitation sensor.
  • 8. The air conditioning system according to claim 7 wherein the plurality of condenser louvers and the plurality of exhaust louvers are controlled to operate in the same manner and thereby be maintained in a same relative position.
  • 9. The air conditioning system according to claim 8 wherein the control system is further operable to automatically control each of the exhaust fan, the return damper, the outside air damper, the condenser, the bypass damper, the fan and the outlet damper.
  • 10. The air conditioning system according to claim 1 wherein the exhaust canopy and the condenser canopy are each made of metal.
  • 11. The air conditioning system according to claim 1, further including another air conditioning apparatus according to claim 1 adjacent to the air conditioning apparatus that is further configured for connection to another warm exhaust outlet duct formed through another heated air opening in the exterior wall, and for connection to another cool air inlet duct formed through another return air opening in the exterior wall; and wherein the cool air duct and the another cool air duct connect together within the building.
  • 12. An air conditioning system for a building requiring a high volume of cooled air, the building having an exterior wall that provides a barrier against the external environment and includes a heated air opening disposed adjacent to a return air opening, the system comprising: a warm exhaust outlet duct formed through the heated air opening;a cool air inlet duct formed through the return air opening;an air conditioning apparatus connected to and that receives heated air from the warm exhaust outlet duct, connected to and emits cooled air into the cool air inlet duct, and connected to and may be configured to emit vented air into the external environment through an exhaust opening, the air conditioning apparatus disposed in the external environment, external to the exterior wall, and mounted adjacent the exterior wall, the air conditioning apparatus further including: a heat exchange unit containing an exhaust fan disposed at a top surf ace of the heat exchange unit that emits heat from the heated air as the vented air upwardly, thereby allowing return air to pass through a return opening that contains a return damper disposed therein;an exhaust canopy that covers the exhaust fan and provides an opening through which the vented air will pass to the external environment, the exhaust canopy further including a plurality of louvers, the plurality of louvers being controlled to (1) open or close to minimize noise from being passed into the external environment; and 2) open or close to reduce precipitation from falling onto the exhaust fan;a filter chamber, the filter chamber including an air intake area coupled to the heat exchange unit and an air filter, the filter chamber being configurable to receive the return air based upon a return air damper position, the filter chamber providing filtered air;a cooling unit coupled to the filter chamber that has an air cooling area through which the filtered air passes to create the cooled air, the cooling unit including: a direct cooling coil filled with a cooling substance which the filtered air passes, the cooling substance being circulated through a condenser unit disposed within a walled area of the air conditioning apparatus;a plurality of condenser fans associated with the condenser unit to emit heat from the cooling substance being circulated, the heat being vented into the external environment, thereby allowing the cooling substance to cool and condense;a condenser canopy that covers the plurality of condenser fans and provides an opening through which the heat will pass to the external environment, the condenser canopy further including a plurality of condenser louvers, controllable to open or close; andone or more air cooling area fans operable to push the filtered air through the air cooling area and toward the cool air inlet duct.
  • 13. The air conditioning system according to claim 12 wherein the heat exchange unit is disposed above the filter chamber and the cooling unit, and the cooling unit top surface is adjacent to the bottom surface of the heat exchange unit.
  • 14. The air conditioning system according to claim 12 further including a control system operable to automatically control each of the plurality of louvers in dependence on one or more of a predetermined noise profile and precipitation signals.
  • 15. The air conditioning system according to claim 14 wherein the plurality of condenser louvers and the plurality of exhaust louvers are controlled to operate in the same manner and thereby be maintained in a same relative position.
  • 16. The air conditioning system according to claim 15 wherein the control system is further operable to automatically control each of the exhaust fan, the return damper, the outside air damper, the condenser, the bypass damper, the fan and the outlet damper.
Parent Case Info

This application is a continuation-in-part of U.S. patent application Ser. No. 13/651,319 filed Oct. 12, 2012, entitled “Facility Including Externally Disposed Data Center Air Handling Units”, which is a continuation of U.S. patent application Ser. No. 12/384,109 filed Mar. 30, 2009 (now U.S. Pat. No. 8,523,643) entitled “Electronic Equipment Data Center or Co-Location Facility Designs and Methods of Making and Using the Same,” filed Mar. 30, 2009, which claims priority to U.S. Provisional Application No. 61/040,636 entitled “Electronic Equipment Data Center or Co-Location Facility Designs and Methods of Making and Using the Same,” filed on Mar. 28, 2008, and which is also a continuation-in part to U.S. application Ser. No. 12/138,771 entitled “Electronic Equipment Data Center or Co-location Facility Designs and Methods of Making and Using the Same” filed Jun. 13, 2008, which application claims priority to U.S. Provisional Application Ser. No. 60/944,082 entitled “Electronic Equipment Data Center or Co-location Facility Designs and Methods of Making and Using the Same” filed Jun. 14, 2007, which applications are each expressly incorporated by reference herein.

US Referenced Citations (357)
Number Name Date Kind
1363407 Goudie Dec 1920 A
2330769 Wichner Sep 1943 A
2407217 Banneyer Sep 1946 A
2880949 Fuss Apr 1959 A
2891750 Bergquist Jun 1959 A
3192306 Skonnord Jun 1965 A
3202580 Bell Aug 1965 A
3513326 Potts May 1970 A
3521843 Ogle Jul 1970 A
3563882 Kimura et al. Feb 1971 A
3840124 Atwater Oct 1974 A
3985957 Torn Oct 1976 A
4028293 Van Den Berg Jun 1977 A
4073099 Van Der et al. Feb 1978 A
4102463 Schmidt Jul 1978 A
4118608 Kussy Oct 1978 A
4158754 Yonezaki et al. Jun 1979 A
4171029 Beale Oct 1979 A
4189990 Kittler Feb 1980 A
4233858 Rowlett Nov 1980 A
4258271 Chappell Mar 1981 A
4320261 Scerbo et al. Mar 1982 A
4434390 Elms Feb 1984 A
4453117 Elms Jun 1984 A
4456867 Mallick et al. Jun 1984 A
4461986 Maynard et al. Jul 1984 A
4467260 Mallick Aug 1984 A
4472920 Simpson Sep 1984 A
4476423 Mallick Oct 1984 A
4528789 Simpson Jul 1985 A
4548164 Ylonen et al. Oct 1985 A
4602468 Simpson Jul 1986 A
4620397 Simpson et al. Nov 1986 A
4663911 Gracia May 1987 A
4797783 Kohmoto Jan 1989 A
4996909 Vache et al. Mar 1991 A
5003867 Sodec et al. Apr 1991 A
5005323 Simpson et al. Apr 1991 A
5142838 Simpson Sep 1992 A
5237484 Ferchau Aug 1993 A
5271585 Zetena Dec 1993 A
5312296 Aalto et al. May 1994 A
5322646 Wright et al. Jun 1994 A
5438781 Landmann Aug 1995 A
5473114 Vogel Dec 1995 A
5544012 Koike Aug 1996 A
5545086 Sharp Aug 1996 A
5570740 Flores et al. Nov 1996 A
5600924 Forsberg Feb 1997 A
5657641 Cunningham et al. Aug 1997 A
5704170 Simpson Jan 1998 A
5743063 Boozer Apr 1998 A
5769365 Onishi Jun 1998 A
5784847 Wiklund Jul 1998 A
5852904 Yu et al. Dec 1998 A
5857292 Simpson Jan 1999 A
5875592 Allman et al. Mar 1999 A
5880544 Ikeda Mar 1999 A
5885154 Napadow et al. Mar 1999 A
5941767 Fukuda et al. Aug 1999 A
5969292 Snider et al. Oct 1999 A
6034873 Stahl et al. Mar 2000 A
6079941 Lee Jun 2000 A
6129316 Bauer Oct 2000 A
6150736 Brill Nov 2000 A
6224016 Lee et al. May 2001 B1
6231704 Carpinetti May 2001 B1
6301853 Simpson et al. Oct 2001 B1
6365830 Snider, Jr. Apr 2002 B1
6374627 Schumacher Apr 2002 B1
6394398 Reed May 2002 B1
6407533 Bartek et al. Jun 2002 B1
6412260 Lukac Jul 2002 B1
6412292 Spinazzola et al. Jul 2002 B2
6427454 West Aug 2002 B1
6437243 VanderVelde Aug 2002 B1
6453055 Fukumura et al. Sep 2002 B1
6481527 French et al. Nov 2002 B1
6506110 Borisch Jan 2003 B1
6515224 Pedro Feb 2003 B1
6535382 Bishop et al. Mar 2003 B2
6541704 Levenson et al. Apr 2003 B1
6566775 Fradella May 2003 B1
6567769 Chang May 2003 B2
6574970 Spinazzola et al. Jun 2003 B2
6592448 Williams Jul 2003 B1
6616524 Storck et al. Sep 2003 B2
6672955 Charron Jan 2004 B2
6707688 Reyes et al. Mar 2004 B2
6722151 Spinazzola et al. Apr 2004 B2
6742942 Hering et al. Jun 2004 B2
6745579 Spinazzola et al. Jun 2004 B2
6794777 Fradella Sep 2004 B1
6817688 O'Halloran Nov 2004 B2
6822859 Coglitore et al. Nov 2004 B2
6824150 Simione Nov 2004 B2
6833991 Van Gaal Dec 2004 B2
6846132 Kennedy et al. Jan 2005 B2
6848267 Pierson Feb 2005 B2
6859366 Fink et al. Feb 2005 B2
6862179 Beitelmal et al. Mar 2005 B2
6867967 Mok Mar 2005 B2
6897587 McMullen May 2005 B1
6957670 Kajino Oct 2005 B1
6967283 Rasmussen et al. Nov 2005 B2
6980433 Fink et al. Dec 2005 B2
6981915 Moore et al. Jan 2006 B2
7003374 Olin et al. Feb 2006 B2
7033267 Rasmussen et al. Apr 2006 B2
7042722 Suzuki et al. May 2006 B2
7061715 Miyamoto Jun 2006 B2
7085133 Hall Aug 2006 B2
7100827 Olin et al. Sep 2006 B2
7128138 Des Champs Oct 2006 B2
7187265 Senogles et al. Mar 2007 B1
7232236 Vitense et al. Jun 2007 B2
7278273 Witted Oct 2007 B1
7315448 Bash et al. Jan 2008 B1
7369741 Reagan et al. May 2008 B2
7372695 Coglitore May 2008 B2
7430118 Noteboom et al. Sep 2008 B1
7448945 Bessent Nov 2008 B2
7477514 Campbell et al. Jan 2009 B2
7486511 Griffel et al. Feb 2009 B1
7500911 Johnson et al. Mar 2009 B2
7505849 Saarikivi Mar 2009 B2
7508663 Coglitore et al. Mar 2009 B2
7511959 Belady Mar 2009 B2
7542287 Lewis et al. Jun 2009 B2
7568360 Bash et al. Aug 2009 B1
7574839 Simpson Aug 2009 B1
7601922 Larsen et al. Oct 2009 B2
7604535 Germagian et al. Oct 2009 B2
7641546 Bok et al. Jan 2010 B2
7643291 Mallia et al. Jan 2010 B2
7656660 Hoeft Feb 2010 B2
7667965 Nobile Feb 2010 B2
7675747 Ong et al. Mar 2010 B1
7684193 Fink et al. Mar 2010 B2
7688578 Mann et al. Mar 2010 B2
7716829 Des Champs et al. May 2010 B2
7778030 Chiriac Aug 2010 B1
7787260 Hruby et al. Aug 2010 B2
7789359 Chopp et al. Sep 2010 B2
7804685 Krietzman et al. Sep 2010 B2
7804690 Huang et al. Sep 2010 B2
7841199 VanGilder et al. Nov 2010 B2
7862410 McMahan et al. Jan 2011 B2
7881310 Rasmussen et al. Feb 2011 B2
7894190 Davis et al. Feb 2011 B2
7903407 Matsushima et al. Mar 2011 B2
7944692 Grantham et al. May 2011 B2
7954070 Plocher et al. May 2011 B2
7957139 Davis et al. Jun 2011 B2
7971446 Clidaras Jul 2011 B2
8037644 Hall Oct 2011 B2
8040673 Krietzman Oct 2011 B2
8072780 Roy Dec 2011 B1
8113010 Carlson Feb 2012 B2
8144467 Campbell et al. Mar 2012 B2
8159820 Ibori et al. Apr 2012 B2
8180495 Roy May 2012 B1
8209056 Rasmussen et al. Jun 2012 B2
8209993 Carlson et al. Jul 2012 B2
8223495 Carlson et al. Jul 2012 B1
8257155 Lewis Sep 2012 B2
8276397 Carlson et al. Oct 2012 B1
8282451 Taylor Oct 2012 B2
8300410 Slessman Oct 2012 B2
8310832 Vanderveen et al. Nov 2012 B2
8346398 Ahmend et al. Jan 2013 B2
8395891 Noteboom et al. Mar 2013 B2
8469782 Roy Jun 2013 B1
8493732 Lineal et al. Jul 2013 B2
8498114 Martini Jul 2013 B2
8509960 Tai et al. Aug 2013 B2
8514572 Rogers Aug 2013 B2
8523643 Roy Sep 2013 B1
8553409 Rehmann et al. Oct 2013 B2
8574046 Nishiyama et al. Nov 2013 B2
8583290 Campbell et al. Nov 2013 B2
8601827 Keisling et al. Dec 2013 B2
8636565 Carlson et al. Jan 2014 B2
8705233 Rehmann et al. Apr 2014 B2
8782234 Pienta et al. Jul 2014 B2
8806238 Jau Aug 2014 B2
8824142 Jewell Sep 2014 B2
8853872 Clidaras et al. Oct 2014 B2
9021821 Dunnavant May 2015 B2
9032742 Dunnavant May 2015 B2
9055696 Dunnavant Jun 2015 B2
9104387 Eichelberg Aug 2015 B1
9119326 McDonnell et al. Aug 2015 B2
9121618 Fisher et al. Sep 2015 B2
9204578 Smith Dec 2015 B2
9282684 Keisling et al. Mar 2016 B2
9301432 Nelson et al. Mar 2016 B2
9313927 Krietzman Apr 2016 B2
9363925 Czamara Jun 2016 B2
9560777 Krietzman et al. Jan 2017 B2
9591790 Eichelberg Mar 2017 B2
9606588 Dean et al. Mar 2017 B2
9629285 Lachapelle et al. Apr 2017 B1
9648784 Keisling et al. May 2017 B2
9867318 Eichelberg Jan 2018 B2
9877414 Vorreiter Jan 2018 B2
20010029163 Spinazzola et al. Oct 2001 A1
20020005457 Lee et al. Jan 2002 A1
20020059804 Spinazzola et al. May 2002 A1
20020108386 Spinazzola et al. Aug 2002 A1
20020121555 Cipolla et al. Sep 2002 A1
20030050003 Charron Mar 2003 A1
20030066638 Qu Apr 2003 A1
20030122379 Woods Jul 2003 A1
20030124971 Williams Jul 2003 A1
20030143942 Kennedy et al. Jul 2003 A1
20030181158 Schell et al. Sep 2003 A1
20030183955 Fields Oct 2003 A1
20030209023 Spinazzola et al. Nov 2003 A1
20030231881 Hering et al. Dec 2003 A1
20040004813 Coglitore et al. Jan 2004 A1
20040050231 Chu Mar 2004 A1
20040099747 Johnson et al. May 2004 A1
20040118137 Patel et al. Jun 2004 A1
20040148934 Pinkerton Aug 2004 A1
20040218355 Bash et al. Nov 2004 A1
20050024826 Bash Feb 2005 A1
20050034468 Dietz Feb 2005 A1
20050099770 Fink May 2005 A1
20050167135 Jackson Aug 2005 A1
20050170770 Johnson et al. Aug 2005 A1
20050185363 Rasmussen et al. Aug 2005 A1
20050225936 Day Oct 2005 A1
20050245132 Olin et al. Nov 2005 A1
20050246057 Olin et al. Nov 2005 A1
20050278070 Bash et al. Dec 2005 A1
20060021786 Fetterolf et al. Feb 2006 A1
20060026954 Truong Feb 2006 A1
20060055175 Grinblat Mar 2006 A1
20060056127 Lewis Mar 2006 A1
20060066163 Melfi Mar 2006 A1
20060072277 Schmidt et al. Apr 2006 A1
20060082263 Rimler et al. Apr 2006 A1
20060146520 Vitense et al. Jul 2006 A1
20060158037 Danley Jul 2006 A1
20060185931 Kawar Aug 2006 A1
20060187636 Fink et al. Aug 2006 A1
20060236487 Dean Oct 2006 A1
20060260338 Van Gilder et al. Nov 2006 A1
20060276121 Rasmussen et al. Dec 2006 A1
20060277501 Plocher et al. Dec 2006 A1
20060281061 Hightower Dec 2006 A1
20070021050 Kennedy Jan 2007 A1
20070032979 Hamann et al. Feb 2007 A1
20070040263 Towada Feb 2007 A1
20070064389 Lewis, II et al. Mar 2007 A1
20070078635 Rasmussen et al. Apr 2007 A1
20070082195 Goecke et al. Apr 2007 A1
20070094946 Schoeny May 2007 A1
20070105445 Manto et al. May 2007 A1
20070129000 Rasmussen et al. Jun 2007 A1
20070135032 Wang Jun 2007 A1
20070146994 Germagian Jun 2007 A1
20070171613 McMahan et al. Jul 2007 A1
20070211443 Wechter et al. Sep 2007 A1
20070213000 Day Sep 2007 A1
20070243425 Spaner Oct 2007 A1
20070253181 Bersiek Nov 2007 A1
20070267247 Tartsch Nov 2007 A1
20070274043 Shabay Nov 2007 A1
20080029250 Carlson et al. Feb 2008 A1
20080035810 Lewis Feb 2008 A1
20080055848 Hamburgen et al. Mar 2008 A1
20080055850 Carlson et al. Mar 2008 A1
20080094797 Coglitore Apr 2008 A1
20080137266 Jensen Jun 2008 A1
20080264688 Chopp et al. Oct 2008 A1
20080299890 Orrell Dec 2008 A1
20080305733 Noteboom et al. Dec 2008 A1
20090051545 Koblasz Feb 2009 A1
20090061756 Germagian et al. Mar 2009 A1
20090064551 Schroder et al. Mar 2009 A1
20090195977 Fink et al. Aug 2009 A1
20090197684 Arezina et al. Aug 2009 A1
20090228726 Malik Sep 2009 A1
20090229510 Sutter Sep 2009 A1
20090235097 Hamilton Sep 2009 A1
20090239460 Luciat et al. Sep 2009 A1
20090239461 Lewis et al. Sep 2009 A1
20090241578 Carlson Oct 2009 A1
20090277605 Vangilder et al. Nov 2009 A1
20090308579 Johnson et al. Dec 2009 A1
20090319650 Collins Dec 2009 A1
20090326721 Sugiyama Dec 2009 A1
20100003911 Graczyk et al. Jan 2010 A1
20100016730 Tanaka et al. Jan 2010 A1
20100048119 Tashiro Feb 2010 A1
20100061057 Dersch Mar 2010 A1
20100061059 Krietzman et al. Mar 2010 A1
20100110626 Schmitt et al. May 2010 A1
20100136895 Sgro Jun 2010 A1
20100139887 Slessman Jun 2010 A1
20100144265 Bednarcik et al. Jun 2010 A1
20100151781 Slessman et al. Jun 2010 A1
20100154448 Hay Jun 2010 A1
20100165565 Hellriegal et al. Jul 2010 A1
20100165572 Fink Jul 2010 A1
20100170277 Schmitt et al. Jul 2010 A1
20100187832 Holland Jul 2010 A1
20100190430 Rodriguez et al. Jul 2010 A1
20100201230 Schweitzer et al. Aug 2010 A1
20100216388 Tresh et al. Aug 2010 A1
20100223085 Gauthier et al. Sep 2010 A1
20100223800 Morrison et al. Sep 2010 A1
20100245083 Lewis Sep 2010 A1
20100248609 Tresh et al. Sep 2010 A1
20100267325 Matser et al. Oct 2010 A1
20100304657 Gallmann et al. Dec 2010 A1
20100314849 Realegeno-Amaya Dec 2010 A1
20100328889 Campbell et al. Dec 2010 A1
20110009047 Noteboom et al. Jan 2011 A1
20110014862 Honold et al. Jan 2011 A1
20110031071 Takeuchi Feb 2011 A1
20110078480 Calo et al. Mar 2011 A1
20110094978 Bailey et al. Apr 2011 A1
20110105010 Day May 2011 A1
20110122570 Beck et al. May 2011 A1
20110143644 McMahan et al. Jun 2011 A1
20110156480 Park Jun 2011 A1
20110157829 Wormsbecher et al. Jun 2011 A1
20110189936 Haspers et al. Aug 2011 A1
20110195652 Smith Aug 2011 A1
20110232209 Boersema Sep 2011 A1
20110239679 Dechene et al. Oct 2011 A1
20110239681 Ziegler Oct 2011 A1
20110239683 Czamara et al. Oct 2011 A1
20110306288 Murayama Dec 2011 A1
20120012283 Bean, Jr. Jan 2012 A1
20120014060 Slessman Jan 2012 A1
20120014061 Slessman Jan 2012 A1
20120018966 Moore et al. Jan 2012 A1
20120031585 Salpeter Feb 2012 A1
20120041569 Zhang Feb 2012 A1
20120147552 Driggers Jun 2012 A1
20120167600 Dunnavant Jul 2012 A1
20120229972 Bean, Jr. Sep 2012 A1
20120255710 Maselli Oct 2012 A1
20120276834 Peng et al. Nov 2012 A1
20120281357 Peng et al. Nov 2012 A1
20120297807 Canney et al. Nov 2012 A1
20120300391 Keisling Nov 2012 A1
20120300398 Eckberg et al. Nov 2012 A1
20120327592 Godrich et al. Dec 2012 A1
20120331317 Rogers Dec 2012 A1
20130148291 Slessman Jun 2013 A1
20130340361 Rogers Dec 2013 A1
20140137491 Somani et al. May 2014 A1
Foreign Referenced Citations (2)
Number Date Country
2228024 Aug 1990 GB
WO02052107 Jul 2002 WO
Non-Patent Literature Citations (12)
Entry
Complaint, “Switch v. Aligned Data Centers”, 2017, U.S District Court for the Eastern District of Texas, Marshall Division (Civil Action No. 2:17-CV-574-JRG). Litigation concerning U.S. Pat. No. 9,622,389 with invalidity allegation based on U.S. Pat. No. 8,636,565 (US2008/0055850).
Proffitt, M. “Rack-Level Power and Cooling Designs: Staying Ahead of the Curve”, Jan. 2003, ECN Magazine p. 33.
Beaty, D. “Cooling Data Centers with Raised-Floor Plenums”, Sep. 2005, HPAC Engineering pp. 58-65.
Fink, J. “Impact of High Density Hot Aisles on IT Personnel Work Conditions”, 2005, APC White Paper #123 pp. 1-15.
Dunlap, K. “Maximizing Data Center Cooling—Auditing and understanding data center cooling performance”, Jan. 2005, Energy User News pp. 10, 12.
Dunlap et al., The Advantages of Row and Rack-Oriented Cooling Architectures for Data Centers, 2006, APC White Paper #130 pp. 1-21.
Greenberg et al., “Best Practices for Data Centers: Lessons Learned from Benchmarking 22 Data Centers”, 2006, ACEEE Summer Study on Energy Efficiency in Buildings pp. 376-387.
Rasmussen, N. “Cooling Strategies for Ultra-High Density Racks and Blade Servers”, 2006, APC White Paper #46 (Revision 5) pp. 1-22.
Hannaford, P. “Ten Cooling Solutions to Support High-Density Server Deployment”, 2006, APC White Paper #42 (Revision 2) pp. 1-16.
Domich, K. “Data-center power and cooling strategies”, May 2007, Infostor pp. 32-33.
International Search Report dated Aug. 7, 2014 in corresponding PCT/US14/30716.
Intel, publication date, if any, unknown, “Air-Cooled High-Performance Data Centers: Case Studies and Best Methods”, white paper, dated Nov. 2006, pp. 1-20.
Related Publications (1)
Number Date Country
20170223874 A1 Aug 2017 US
Provisional Applications (2)
Number Date Country
61040636 Mar 2008 US
60944082 Jun 2007 US
Continuations (3)
Number Date Country
Parent 14641226 Mar 2015 US
Child 15431674 US
Parent 12384109 Mar 2009 US
Child 13651316 US
Parent 12384109 Mar 2009 US
Child 14641226 US
Continuation in Parts (2)
Number Date Country
Parent 13651316 Oct 2012 US
Child 14641226 US
Parent 12138771 Jun 2008 US
Child 12384109 US