The present invention relates to air-heating gas burners, and particularly to a burner for burning a mixture of gaseous fuel and process air to heat the air for use in industrial applications. More particularly, the present invention relates to a line burner assembly including a fuel manifold and mixing plates mounted on the fuel manifold and formed to include apertures through which process air passes to mix with fuel discharged from the fuel manifold to produce a flame between the mixing plates.
Line burner assemblies are able to burn a mixture including a gaseous fuel and air to produce a flame. Line burners are disclosed in U.S. Pat. Nos. 3,297,259; 4,869,665; and 5,131,836, which patents are hereby incorporated by reference herein. The disclosures in U.S. Pat. Nos. 3,051,464; 3,178,161; and 4,573,907 are also hereby incorporated by reference herein.
It is known to provide elongated line burners which are formed to include a plurality of gaseous fuel openings and a plurality of air openings along the length of the burner. Such line burners are known as “nozzle mix” line burners. Examples of nozzle mix line burners are shown in U.S. Pat. Nos. 4,340,180 and 4,403,947, which patents are hereby incorporated by reference herein.
It is also known to supply a premixed gaseous fuel and combustion air mixture to a manifold of a line burner and ignite the mixture to produce a flame. Examples of “premix” line burners are shown in U.S. Pat. Nos. Re. 25,626; 3,178,161; 3,297,259; 4,573,907; and 4,869,665, which patents are hereby incorporated by reference herein.
Air-heating gas burners are well-suited to warm or temper incoming air into buildings to relieve the building heating plant of peak or extra loads. They can be used to create a warm air curtain on open docks and for process drying in industrial or agricultural applications.
Line burners are useful in various industrial applications where it is required to have a specific temperature distribution over a predetermined space or area. Examples of applications where line burners are used include graphics applications, incinerators, turbine boosters, and board dryers. In a graphics application, for example, premix line burners are used to generate hot air to dry ink or solvents from printing presses.
Process air is that air that is produced in a factory or industrial process and found to contain various inert matter entrained therein. It is desirable to dispose of this process air in an environmentally sound way to minimize unwanted discharge of inert matter into the environment. One way to dispose of many of the contaminants entrained in process air is to incinerate it by burning a mixture of gaseous fuel and process air in a line burner. For example, process air containing solvents emitted from a printing press can be introduced into a line burner and mixed with gaseous fuel to produce a flammable mixture. These entrained solvents are incinerated by the flame of the line burner as the process air passes through the mixing region of the line burner and the mixture of gaseous fuel and process air is ignited. It is important that this mixture contain enough oxygen to kindle or sustain a flame.
According to the present invention, a line burner includes a fuel manifold, a pair of perforated air-mixing plates coupled to the fuel manifold to define a fuel-air mixing region therebetween above the fuel manifold, and an unperforated air-deflector wing coupled to the top end of each air-mixing plate. The air-deflector wings are sized and arranged to stimulate recirculation of combustion products back into the primary reaction zone in the fuel-air mixing region to increase residence time of combustion products in a high-temperature region of the flame produced in the fuel-air mixing region.
In illustrative embodiments, the air-flow apertures formed in at least some of the air-mixing plates are sized, shaped, and spaced in a pattern selected to improve aeration in the fuel-air mixing region. In a section of the aeration pattern, the apertures are arranged in rows and columns. With respect to the rows, the apertures nearer the side edges of the air-mixing plates are larger than the apertures nearer the middle of the air-mixing plates. With respect to the columns, the apertures become smaller going down each column.
In other illustrative embodiments, a burner includes an elbow-shaped manifold and a wedge-shaped air-mixing plate mounted to the fuel manifold to accommodate a turn of the fuel manifold. The wedge-shaped air-mixing plate includes first and second side edges that diverge away from one another as they extend away from the fuel manifold.
Additional features of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments of the invention exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A line burner 10 is illustrated in
A mixing region 22 is provided above fuel manifold 12 to contain a fuel-air mixture therein and support a flame upon combustion of the fuel-air mixture admitted into mixing region 22. Mixing region 22 is bounded in part by fuel manifold 12, air-mixing plates 14, 16, and end plates 18, 20.
Air-mixing plates 14, 16 are located on opposite sides of fuel manifold 12 as shown, for example, in
Air-deflector wings 24, 26 are coupled to top edges 28, 30 of air-mixing plates 14, 16 as shown, for example, in
Wings 24, 26 extend upwardly and away from mixing plates 14, 16. Each air-deflector wing 24, 26 is unperforated and characterized by a width 32 that extends from top edge 28 to outer wing edge 34 for air-deflector wing 24 and that extends from top edge 30 to outer wing edge 36 for air-deflector wing 26. In a presently preferred embodiment, the width 32 of each of air-deflector wings 14, 16 is about two inches as shown, for example, in
Process (or other combustion) air 38 provided by combustion air supply 39 is circulated through a duct 42 surrounding line burner 10 as shown diagrammatically in FIG. 2. Process air 38 moves around line burner 10 as shown in
Process air 38 typically contains a mixture of oxygen and inert gases. The process air passing into mixing region 22 mixes with gaseous fuel 41 supplied to the mixing region through fuel-flow apertures 46 formed in fuel manifold 12 to provide a combustible process air-and-fuel mixture in mixing region 22 of line burner 10. This combustible process air-and-fuel mixture is ignited to produce a flame 48 having roots in mixing region 22 as shown, for example, in FIG. 4.
A fan 50 is coupled to an outlet 52 formed in duct 42 to draw process air 38 to burner 10 and to discharge air heated in duct 42 to a destination away from duct 42 as shown in FIG. 2. It is within the scope of this disclosure to place line burner 10 in any suitable environment.
Fuel manifold 12 includes a base 70, mounting flanges 72 at opposite ends of base 70, and a plate spacer 78 that is coupled to a top portion of base 70 as shown in
A fuel supply 54 is provided to supply gaseous fuel 41 to fuel manifold 12 through fuel supply line 56 as shown diagrammatically in
Fuel transfer conduit 58 has an inner diameter of 1.88 inches and larger volume than prior art manifolds. This permits higher burner firing rates without increasing pressure drop or inlet pressure requirements.
Line burner 10 operates to minimize emission of carbon monoxide and nitrogen dioxide in the products of combustion by minimizing flame quenching through enhanced aerodynamic design resulting in improved mixing of fuel and air. In direct-fired make-up-air heating applications, a large amount of air is heated to a relatively low temperature (e.g., less than 160° F.). The volume of air which flows across the burner is 3,000 to 4,000 times the amount of air required to burn the fuel completely. When an excessive amount of air is introduced into the combustion zone, flame quenching occurs, causing flame temperatures to drop below the level necessary to completely oxidize the fuel molecules.
To prevent the products of combustion from being quenched or swept away by the process air, line burner 10 includes unperforated air-deflector wings 24, 26 at the outer ends of air-mixing plates 14, 16 to facilitate re-circulation of combustion products back into the primary reaction zone (as shown diagrammatically in FIG. 4), increasing residence time of combustion products in the high-temperature region of the flame.
Fuel manifold 12 includes a wide plate spacer 78 that is sized to maximize the protected volume of the reaction zone and improve flame stability and flame attachment at the fuel discharge nozzles over a wide operating range. The improved aerodynamics and flame attachment creates a more compact and intense reaction zone that minimizes flame quenching. Increased residence time at high temperatures and increased combustion intensity promotes the oxidation of carbon monoxide to carbon dioxide and minimizes formation of nitrogen dioxide.
Each of air-mixing plates 14, 16 includes a panel 180, as illustrated, for example, in FIG. 8. Each panel 180 is coupled to respective air-deflector wing 24, 26 and base portion 74, 76 and includes respective top edge 28, 30, a first side edge 181, and a second side edge 183.
A pair of upper side flanges 182 are coupled to either side of each air-deflector wing 24, 26, as illustrated, for example, in
Panel 180 of each air-mixing plates 14, 16 includes an array 92 of apertures and an illustrative array is shown in FIG. 8. Array 92 includes an upper section and a lower section, a portion of which is shown in FIG. 13. The upper section includes six domes 110 each formed to include a pair of apertures 111 (FIG. 11); a first set 112 of protrusion apertures (FIG. 9); a second set 113 of protrusion apertures (FIG. 8); a third set 114 of protrusion apertures (FIG. 12); a fourth set 115 of protrusion apertures (FIG. 12); a fifth set 116 of protrusion apertures (FIG. 10); apertures 117 (FIG. 8); apertures 118 (FIG. 8); and apertures 119 (FIG. 8).
Illustratively, the diameters of the apertures of the upper section of array 92 are as follows: six domes 110—0.312 inch; dome apertures 111—0.124 inch; first set 112 of four protrusion apertures—0.344 inch; second set 113 of four protrusion apertures—0.161 inch; third set 114 of four protrusion apertures—0.312 inch; fourth set 115 of four protrusion apertures—0.312 inch; fifth set 116 of six protrusion apertures—0.188 inch; five apertures 117—0.188 inch; two apertures 118—0.312 inch; and two apertures 119—0.250 inch. The height 171 of protrusion aperture 112 is 0.120 inch (FIG. 9). The height 172 of dome 110 is 0.124 inch and dome 110 forms an angle 173 of 41°. The height 174 of protrusion aperture 115 is 0.120 inch.
A lower section of array 92 includes first, second, third, fourth, fifth, and sixth rows 120, 121, 122, 123, 124, and 125, respectively, of apertures, as illustrated, for example, in
Illustratively, the diameters of the apertures of first row 120 is as follows: first, second, seventh, and eighth columns 126, 127, 132, 133—0.144 inch; third, fourth, fifth, and sixth columns 128, 129, 130, 131—0.136 inch; and the other eight apertures—0.125 inch. The diameters of the apertures of second row 121 is as follows: first, second, seventh, and eighth columns 126, 127, 132, 133—0.140 inch; third, fourth, fifth, and sixth columns 128, 129, 130, 131—0.128 inch; and the other eight apertures—0.116 inch.
Illustratively, the diameters of the apertures of third row 122 is as follows: first, second, seventh, and eighth columns 126, 127, 132, 133—0.108 inch; third, fourth, fifth, and sixth columns 128, 129, 130, 131—0.101 inch; and the other eight apertures—0.098 inch. The diameters of the apertures of fourth row 123 is as follows: first, second, seventh, and eighth columns 126, 127, 132, 133—0.101 inch; third, fourth, fifth, and sixth columns 128, 129, 130, 131—0.096 inch; and the other eight apertures—0.094 inch.
Illustratively, the diameters of the apertures of fifth row 124 is as follows: first, second, seventh, and eighth columns 126, 127, 132, 133—0.096 inch; third, fourth, fifth, and sixth columns 128, 129, 130, 131—0.089 inch; and the other eight apertures—0.082 inch. The diameters of the apertures of sixth row 125 is as follows: first, second, seventh, and eighth columns 126, 127, 132, 133—0.082 inch; third, fourth, fifth, and sixth columns 128, 129, 130, 131—0.078 inch; and the other eight apertures—0.076 inch.
Base portion 74 is also formed to include a plurality of apertures aligned with the columns of array 92, as illustrated, for example, in
Referring to
Referring to
Referring to
Each burner 210, 310, and 410 includes “straight” perforated air-mixing plates 214 configured as described previously with respect to perforated air-mixing plates 14, 16. An air-deflector wing 216 configured as described previously with respect to air-deflector wings 24, 26 is coupled to each straight air-mixing plate 212.
Each burner 210, 310, and 410 includes one or more corner perforated air-mixing plates 218 as well. Each corner air-mixing plate 218 is described in more detail below. Each burner 210, 310, and 410 includes at least one corner 220 to which one corner air-mixing plate 218 is coupled. T-shaped burner 210 includes a pair of corners 220 and a corner air-mixing plate 218 is coupled to each corner 220 (see FIG. 14). H-shaped burner 310 includes four corner 220 and a corner air-mixing plate 218 is coupled to each one of those corners 220 (see FIG. 15). Elbow-shaped burner 410 includes a single corner 220 and a corner air-mixing plate 218 is coupled to that corner 220 (FIG. 16).
Elbow-shaped burner 410 further includes a wedge-shaped air-mixing plate 414, as illustrated, for example, in
Fuel manifold 412 can be L-shaped, as illustrated, for example, in
Plate spacer 478 is formed to include a plurality of fuel-flow apertures 479 in communication with fuel transfer passageway 471 to dispense fuel into a fuel-air mixing region 473 defined between air-mixing plates 214, 218, 414, as illustrated, for example, in
Plate spacer 478 includes an inner portion 480 and an outer portion 482, as illustrated, for example, in
Straight air-mixing plates are coupled to the first and second plate-engaging faces 485, 486 via fasteners 491 received within apertures 490, as illustrated, for example, in
First and second plate-engaging faces 483, 484 cooperate to define part of inner portion 488 of turn 477. Inner portion 488 also defines part of corner 220 of fuel manifold 412. Third plate-engaging face 487 defines part of a turn outer portion 489 of turn 477. Corresponding portions of base 470 of fuel manifold 412 define the remainder of turn inner portion 488 and turn outer portion 489.
Corner air-mixing plate 218 includes a first section 222 and a second section 224 coupled to first section 222 along an intermediate edge 226, as illustrated, for example, in FIG. 20. The structure of first and second sections 222, 224 are similar to one another so that the description of first section 222 applies also to second section 224, except as otherwise noted.
First section 222 includes a trapezoid-shaped panel 228 and a base portion 230 coupled to a bottom edge 231 of panel 228, as illustrated, for example, in FIG. 21. Base portion 230 is coupled to the plate spacer of respective fuel manifold 212, 312, 412 to mount corner air-mixing plate 218 thereto. A side flange 232 is coupled to a side edge 234 of panel 228.
An air-deflector wing 236 is coupled to a top edge 238 of panel 228, as illustrated, for example, in
A side flange 248 is coupled to side edge 246. Side flanges 232, 248 cooperate to define a connector 250, as illustrated, for example, in
Panel 228 is formed to include a plurality of apertures through which air can flow, as illustrated, for example, in
Illustratively, the diameters of the apertures of the upper section of panel 228 are as follows: dome apertures—0.070 inch; first set 254 of protrusion apertures—0.344 inch; a second set 255 of protrusion apertures—0.312 inch; a third set 256 of protrusion apertures—0.188 inch; a fourth set 257 of protrusion apertures—0.161 inch; pair of upper apertures 258—0.250 inch; an intermediate aperture 259—0.312 inch; and a pair of smaller apertures 260—0.188 inch.
A lower section of panel 228 is formed to include a plurality of apertures including first, second, third, fourth, fifth, and sixth rows 261, 262, 263, 264, 265, and 266, respectively, as illustrated, for example, in
Illustratively, the diameters of the apertures of first row 261 are as follows: apertures of first and second columns 267, 268—0.144 inch; apertures of third and fourth columns 269, 270—0.136 inch; the other 8 apertures—0.125 inch. The diameters of the apertures of second row 262 are as follows: apertures of first and second columns 267, 268—0.140 inch; apertures of third and fourth columns 269, 270—0.128 inch; the other 8 apertures—0.116 inch.
Illustratively, the diameters of the apertures of third row 263 are as follows: apertures of first and second columns 267, 268—0.106 inch; apertures of third and fourth columns 269, 270—0.101 inch; the other 9 apertures—0.098 inch. The diameters of the apertures of fourth row 264 are as follows: apertures of first and second columns 267, 268—0.101 inch; apertures of third and fourth columns 269, 270—0.098 inch; the other 9 apertures—0.093 inch.
Illustratively, the diameters of the apertures of fifth row 265 are as follows: apertures of first and second columns 267, 268—0.098 inch; apertures of third and fourth columns 269, 270—0.089 inch; the other 10 apertures—0.082 inch. The diameters of the apertures of sixth row 266 are as follows: apertures of first and second columns 267, 268—0.082 inch; apertures of third and fourth columns 269, 270—0.078 inch; the other 10 apertures—0.076 inch.
Base portion 230 is also formed to include a plurality of apertures aligned with the columns of panel 228, as illustrated, for example, in
A burner member 413 includes wedge air-mixing plate 414. Wedge air-mixing plate 414 includes a trapezoid-shaped panel 417, a left side flange 421 coupled to panel 417 along a left side edge 419, a right side flange 420 coupled to panel 417 along a right side edge 422, and a base portion 424 coupled to panel 417 along a bottom edge 426, as illustrated, for example, in
Burner member 413 further includes an air-deflector wing 428 which is coupled to a top edge 430, as illustrated, for example, in
A left side flange 438 of burner member 413 is coupled to left side edge 435 and a right side flange 440 of burner member 413 is coupled to a right side edge 436, as illustrated, for example, in FIG. 29. An outer flange 459 of burner member 413 is coupled to and extends downwardly from outer edge 434.
Left side flanges 421, 425, 438 cooperate to define a left connector 442 that is coupled to one of straight air-mixing plates 214 and one of air-deflector wings 216. Right side flanges 420, 429, 440 cooperate to define a right connector 444 that is coupled to the other of straight air-mixing plates 214 and the other of air-deflector wings 216. Base portions 274 of straight air-mixing plates 214 are coupled to plate spacer 478 of fuel manifold 412. Wedge air-mixing plate 414 is thus coupled to fuel manifold 412 via the straight air-mixing plates 214.
Panel 417 is formed to include a plurality of apertures through which air can flow, as illustrated, for example, in FIG. 28. An upper section of panel 417 includes four circular domes 448 (see also
Illustratively, the diameters of the panel apertures are as follows: dome apertures 449—0.070 inch; protrusion apertures 450—0.161 inch; side apertures 452—0.250 inch; first row 453—0.125 inch; second row 454—0.116 inch; third row 455—0.098 inch; fourth row 456—0.094 inch; fifth row 457—0.082 inch; sixth row 458—0.076 inch.
An illustrative tolerance for the dimensions detailed herein is +/−0.005 inch, unless noted otherwise. For the diameters of the various apertures detailed herein, an illustrative tolerance is 0.010 inch. For angles, an illustrative tolerance is +/−1°.
Although the invention has been disclosed in detail with reference to certain illustrative embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/236,295, filed Sep. 28, 2000, which is expressly incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US01/42393 | 9/28/2001 | WO | 00 | 1/28/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/27238 | 4/4/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3051464 | Yeo et al. | Aug 1962 | A |
3178161 | Yeo et al. | Apr 1965 | A |
3186697 | Haedike et al. | Jun 1965 | A |
3297259 | Maxon, Jr. et al. | Jan 1967 | A |
3494711 | Spielman | Feb 1970 | A |
3649211 | Vosper | Mar 1972 | A |
4573907 | Coppin, et al. | Mar 1986 | A |
4869665 | Coppin | Sep 1989 | A |
4929541 | Potter, et al. | May 1990 | A |
5131836 | Coppin | Jul 1992 | A |
Number | Date | Country |
---|---|---|
2 117 506 | Mar 1982 | GB |
Number | Date | Country | |
---|---|---|---|
20050014103 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60236295 | Sep 2000 | US |