This application claims the benefit of Korean Patent Application No. 10-2020-0136824, filed Oct. 21, 2020, which application is hereby incorporated herein by reference.
The present invention relates to an air injection system and a control method thereof.
An engine uses a catalyst converter as an after-treatment device for purifying harmful substances in exhaust gas.
The catalyst converter should be heated above a predetermined temperature to perform a proper purifying function. Thus, efforts are being made to rapidly increase the catalyst temperature of the catalyst converter above light-off temperature (LOT) in the cold start of the engine and thereby minimize harmful substances discharged from the engine.
Recently, an integrated cylinder head with an exhaust manifold configured such that at least a portion of an exhaust manifold is integrated with a cylinder head of the engine has been developed.
In other words, the integrated cylinder head is configured such that at least some of the exhaust ports connected to respective combustion chambers are coupled to each other in the cylinder head and then communicate with the outside of the cylinder head. For instance, after all the exhaust ports are coupled in the cylinder head, they are connected to an external exhaust pipe through a single passage. Furthermore, in the case of the engine having four combustion chambers, two exhaust ports connected to each combustion chamber are connected in the cylinder head, and then communicate with the outside of the cylinder head via two passages.
For reference, in the case of the structure in which some exhaust ports are connected in the cylinder head and then multiple passages are opened to the outside of the cylinder head, a component coupled to the cylinder head should be provided with passages that are connected, respectively, to the passages opened to the outside of the cylinder head and the passages should be merged into one passage when they are coupled to the catalyst converter. Thus, although some components of the exhaust manifold are included in the cylinder head, this will be referred to as the ‘exhaust manifold’.
Here, a part of the cylinder head to which the exhaust manifold is coupled will be referred to as an ‘exhaust flange’.
Meanwhile, in the case of a structure in which all exhaust ports are merged into one in the cylinder head and then are opened to the outside of the cylinder head through only one passage, i.e. a structure in which only one passage is opened in the exhaust flange, the exhaust manifold is completely included in the cylinder head. Thus, a component coupled to the exhaust flange will be simply referred to as an ‘exhaust pipe’. However, in order to collectively call it together with the exhaust manifold used for the structure in which multiple passages are formed in the exhaust flange, the component coupled to the exhaust flange having only one passage will be also referred to as the ‘exhaust manifold’.
In other words, at least a portion of the exhaust manifold is included in the cylinder head. The exhaust manifold coupled to the exhaust flange of the cylinder head means both an exhaust-pipe type simply having one passage, and a type having a plurality of passages such that they are merged into one.
The foregoing is intended merely to aid in the understanding of the background of the present invention, and is not intended to mean that the present invention falls within the purview of the related art that is already known to those skilled in the art.
The present invention relates to an air injection system and a control method thereof. Particular embodiments relate to an air injection system and a control method thereof, intended to rapidly increase the temperature of a catalyst for purifying the exhaust gas of an engine.
Accordingly, embodiments of the present invention have been made keeping in mind problems occurring in the related art, and an embodiment of the present invention provides an air injection system for an engine and a control method thereof, in which secondary air can be more effectively and appropriately applied to the front of a catalyst converter in an engine having an integrated cylinder head with an exhaust manifold, thus rapidly increasing the temperature of a catalyst in the cold start of the engine, and eventually minimizing harmful substances discharged from the engine, and meeting various emission control requirements.
An embodiment of the present invention provides an air injection system for an engine, including an exhaust flange formed in an integrated cylinder head with an exhaust manifold, an exhaust manifold coupled to the exhaust flange, an air injection nozzle provided on the cylinder head or the exhaust manifold, a valve installed to control air supplied to the air injection nozzle, and a controller configured to control the valve, wherein the controller is configured to control the valve and inject air through the air injection nozzle, when an exhaust-gas temperature reaches a predetermined combustion temperature in an initial start stage of the engine.
When a plurality of exhaust ports is opened in the exhaust flange, the air injection nozzle may comprise a plurality of air injection nozzles to inject air into each of the passages connected to the plurality of exhaust ports, and the plurality of air injection nozzles may be installed to inject air from an exhaust valve of each combustion chamber to a location corresponding to the same exhaust-gas flow length.
The controller may be configured to calculate the exhaust-gas temperature in the initial stage of the start of the engine, from a temperature model including an engine rpm, an intake-air amount, ignition timing, an air-fuel ratio, an engine coolant temperature, and an ambient temperature.
The temperature model used by the controller may be configured to calculate the exhaust-gas temperature at a location where the air injection nozzle is provided.
The controller may be configured to determine the combustion temperature that is a temperature at which fuel components in exhaust gas may be burned by air injected from the air injection nozzle, depending on a displacement volume of the engine and the air-fuel ratio.
The controller may set a waiting time at which the exhaust-gas temperature calculated from the temperature model is expected to be equal to or greater than the combustion temperature, and when the waiting time has elapsed after the engine is started, it may be determined that the exhaust-gas temperature in the initial stage of the start of the engine reaches the combustion temperature.
An embodiment of the present invention provides a method of controlling an air injection system for an engine, the air injection system including a valve installed to control air supplied to an air injection nozzle provided in a cylinder head of the engine having an integrated cylinder head with an exhaust manifold or the exhaust manifold, and a controller configured to control the valve, the method including calculating, by the controller, the exhaust-gas temperature in an initial stage of the start of the engine and a predetermined combustion temperature, when the engine is started, determining, by the controller, that the exhaust-gas temperature is equal to or greater than the combustion temperature, and controlling the valve to inject air through the air injection nozzle, when the exhaust-gas temperature is equal to or greater than the combustion temperature.
The controller may be configured to calculate the exhaust-gas temperature in the initial stage of the start of the engine at a location where the air injection nozzle is provided, using a temperature model including an engine rpm, an intake-air amount, ignition timing, an air-fuel ratio, an engine coolant temperature, and an ambient temperature.
The controller may be configured to determine the combustion temperature, depending on a displacement volume of the engine and the air-fuel ratio.
The controller may set a waiting time at which the exhaust-gas temperature calculated from the temperature model is expected to be equal to or greater than the combustion temperature, and when the waiting time has elapsed after the engine is started, it may be determined that the exhaust-gas temperature in the initial stage of the start of the engine is equal to or greater than the combustion temperature, thus injecting air through the air injection nozzle.
According to an embodiment of the present invention, secondary air can be more effectively and appropriately applied to the front of a catalyst converter in an engine having an integrated cylinder head with an exhaust manifold, thus rapidly increasing the temperature of a catalyst in the cold start of the engine, and eventually minimizing harmful substances discharged from the engine, and meeting various emission control requirements.
The above and other objectives, features, and other advantages of embodiments of the present invention will be more clearly understood from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Referring to
Here, the controller 11 is configured to control the valve 9 and inject air through the air injection nozzle 7, when the exhaust-gas temperature reaches a predetermined combustion temperature in the initial start stage of the engine.
In other words, according to embodiments of the present invention, in order to rapidly increase the catalyst temperature of a catalyst converter in the initial stage of the cold-start of the engine, in the engine having the integrated cylinder head 1, air is injected into exhaust gas via the air injection nozzle 7, so that unburned hydrocarbon which is a fuel component in the exhaust gas is burned. After it is checked that the temperature reaches a combustion temperature by injecting the air into the unburned hydrocarbon in the exhaust gas, the air is injected.
In
Meanwhile, an air pump 25 performs a pumping function of sucking air through the air cleaner 13 and sending the air towards the air injection nozzle 7. The valve 9 is controlled by the controller 11 to supply or block compressed air supplied by the air pump 25 to the air injection nozzle 7.
In the first embodiment shown in
In other words, assuming that the combustion chambers are referred to as first, second, third and fourth chambers from the left of
For reference, in
In this configuration, the air injection nozzle 7 may comprise a plurality of nozzles to inject air into each of passages 6 connected to the plurality of exhaust ports 27. The plurality of air injection nozzles 7 is installed to inject air from the exhaust valve of each combustion chamber 19 to a location corresponding to the same exhaust-gas flow length.
In other words, the locations of the air injection nozzles 7 are selected such that lengths measured along paths where exhaust gas flows from the exhaust valves of the first to fourth combustion chambers through each exhaust port 21 and the exhaust manifold 5 towards the catalyst converter 23 are the same.
The reason is as follows: the temperature of the exhaust gas discharged from each combustion chamber 19 varies depending on the length of the path where the exhaust gas flows. An embodiment of the present invention is configured to simultaneously supply air to the air injection nozzles 7, thus allowing the temperature of the exhaust gas to simultaneously reach the combustion temperature at all locations where the air injection nozzles 7 are installed.
For reference,
Of course, in the second embodiment shown in
For reference,
The controller 11 is configured to calculate the exhaust-gas temperature in the initial stage of the start of the engine, from a temperature model including an engine rpm, an intake-air amount, ignition timing, an air-fuel ratio, an engine coolant temperature, and an ambient temperature.
In other words, the temperature model is configured to output the exhaust-gas temperature using the engine rpm, the intake-air amount, the ignition timing, the air-fuel ratio, the engine coolant temperature, and the ambient temperature as input variables, and may be made in the form of an equation based on results of many experiments and analyses on a corresponding engine.
Alternatively, the temperature model is provided in the map of the exhaust-gas temperature depending on the input variables. The controller 11 may be configured to recognize a desired exhaust-gas temperature based on this map.
Of course, the temperature model is configured to calculate the exhaust-gas temperature at a location where the air injection nozzle 7 is provided.
The controller 11 is configured to determine the combustion temperature that is a temperature at which fuel components in the exhaust gas may be burned by the air injected from the air injection nozzle 7, depending on the displacement volume of the engine and the air-fuel ratio.
In other words, by performing many experiments and analyses on the corresponding engine at the combustion temperature, a mathematical model for determining the combustion temperature depending on the displacement volume of the engine and the air-fuel ratio may be provided or the map may be provided, so that the controller 11 may calculate the combustion temperature using the mathematical model or the map.
The controller 11 sets a waiting time at which the exhaust-gas temperature calculated from the temperature model is expected to be equal to or greater than the combustion temperature. When the waiting time has elapsed after the engine is started, it is determined that the exhaust-gas temperature in the initial stage of the start of the engine reaches the combustion temperature, so that the valve 9 is opened and thereby the air injection nozzle 7 injects the compressed air into the exhaust gas.
Of course, the controller 11 may be configured to directly open the valve 9, when the exhaust-gas temperature calculated from the temperature model directly compares with the combustion temperature and then the exhaust-gas temperature is equal to or greater than the combustion temperature.
As described above, the map of the open time according to the environmental conditions of the engine is previously prepared, and the valve 9 is opened for a time determined from the map, so that the air may be continuously injected into the exhaust gas via the air injection nozzle 7.
Referring to
As described above, the controller 11 may calculate the exhaust-gas temperature in the initial stage of the start of the engine, at a location where the air injection nozzle 7 is provided, using the temperature model including the engine rpm, the intake-air amount, the ignition timing, the air-fuel ratio, the engine coolant temperature, and the ambient temperature.
Furthermore, the controller 11 may determine the combustion temperature, depending on the displacement volume of the engine and the air-fuel ratio.
The controller 11 sets a waiting time at which the exhaust-gas temperature calculated from the temperature model is expected to be equal to or greater than the combustion temperature. When the waiting time has elapsed after the engine is started, it is determined that the exhaust-gas temperature in the initial stage of the start of the engine reaches the combustion temperature, so that the air may be injected through the air injection nozzle 7.
Although the present invention was described with reference to specific embodiments shown in the drawings, it is apparent to those skilled in the art that the present invention may be changed and modified in various ways without departing from the scope of the present invention, which is described in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2020-0136824 | Oct 2020 | KR | national |