The present invention relates to the field of aircraft turbojet engines and is more particularly directed to an air intake of an aircraft turbojet engine nacelle.
In a known manner, an aircraft comprises one or more turbojet engines to enable its propulsion by acceleration of an air flow that circulates from upstream to downstream in the turbojet engine.
With reference to
In a known manner, the turbojet engine 100 comprises a nacelle comprising at its upstream end an air intake 200 comprising an internal wall 201 pointing to axis X and an external wall 202 opposite to the internal wall 201. The walls 201, 202 are connected by an air intake lip 203, which comprises a leading edge, so as to form an annular cavity 220. The air intake 200 has an aerodynamic profile for separating an upstream air flow F into the internal air flow F-INT guided by the internal wall 201 and an external air flow F-EXT guided by the external wall 202. Hereinafter, the terms “internal” and “external” are defined radially with respect to axis X of the turbojet engine 100.
In order to reduce braking distance of an aircraft, especially during landing, it is known to integrate in a nacelle a thrust reversal system for modifying the orientation of the air flow at the exhaust so as to perform a thrust reversal phase. In a known way, a reverse thrust phase is achieved is made by opening flaps and/or grilles in the secondary stream, downstream of the straighteners, in order to lead the air flows radially outwardly or upstream.
For a high bypass ratio turbojet engine, the nacelle has a large diameter and it is not desired to integrate a conventional thrust reversal system since this would be significantly detrimental to the weight, overall size and drag of the turbojet engine.
To allow a thrust reversal phase, another solution consists in providing a Variable Pitch Fan, or VPF, so as to make it possible to reverse the air flow circulating in the secondary stream of a turbojet engine and thus create a reverse thrust allowing the aircraft to decelerate during landing.
With reference to
In practice, as illustrated in
The invention thus aims at reducing this phenomenon in order to increase the performance of the turbojet engine during the reverse thrust phase without affecting the performance of said aircraft during thrust.
In prior art from patent application U.S. Pat. No. 3,736,750A1, an air intake comprising ring portions movable between a cruise, takeoff and landing position in order to reduce the noise emitted is known. Such ring portions do not promote the thrust reversal phase, especially for a high bypass ratio jet engine, for which a flap thrust reversal system is heavy and of large overall size.
The invention relates to an air intake of an aircraft turbojet engine nacelle extending along an axis X oriented from upstream to downstream in which an internal air flow circulates from upstream to downstream during a thrust phase and a reverse air flow from downstream to upstream during a thrust reversal phase, the air intake extending circumferentially about axis X and comprising an internal wall pointing to axis X and configured to guide the internal air flow and the reverse air flow, and an external wall, opposite to the internal wall, and configured to guide an external air flow, the internal wall and the external wall being connected together by an air intake lip.
The invention is remarkable in that the air intake comprises a plurality of guide vanes, each guide vane being movably mounted between:
By virtue of the invention, guide vanes are extended in order to guide the reverse air flow circulating in the vicinity of the internal wall. The gyration of part of the reverse air flow is thus reduced or even eliminated so as to directly oppose the axial air flow in order to obtain an optimal thrust reversal phase. Thus, in the manner of OGV type vanes placed downstream of the fan and used during thrust, the air intake guide vanes, upstream of the fan, allow for optimal guiding during the thrust reversal phase to guide the reverse air flow from the fan.
Further, as the guided air flow is axially oriented, this allows separation at the air intake lip to be promoted and thus improves thrust compared to prior art by eliminating the formation of a vacuum.
The term “guide vane” refers to an aerodynamic profile as well as any other profile, such as a plate of constant thickness, straight or tilted.
According to one aspect of the invention, the guide vanes are distributed over the circumference of the air intake about axis X, in a uniform or non-uniform manner so as to adapt the guiding as a function of the circumferential environment of the air intake and, more generally, of the nacelle. Thus, the reverse air flow can advantageously be oriented according to the needs and restrictions.
According to one aspect of the invention, the air intake comprises at least one moving member configured to move the guide vane from the retracted position to the extended position.
According to one aspect, the moving member is active. The moving member is in the form of a controllable actuator.
According to another aspect, the moving member is passive and is preferably in the form of a pneumatic conduit formed in the annular cavity and opening onto the guide vane in order to move it by suction or blowing between the retracted position and the extended position.
According to another aspect, the guide vane is translationally and/or rotationally mounted in the air intake. A guide vane is configured to be rotatably driven about an axis of rotation substantially parallel to axis X (lateral rotation) or an axis of rotation substantially orthogonal to axis X (longitudinal rotation).
According to one aspect of the invention, the guide vane comprises an aerodynamic profile. The guide vane comprises, in a radial cross-sectional plane, a leading edge positioned downstream and a trailing edge positioned upstream. Thus, the guide vane is adapted to guide only the air flow during the thrust reversal phase. Preferably, the guide vane comprises a front side, in particular curved, surface, and a back side, in particular curved, surface.
According to one aspect of the invention, the air intake comprises a cover member movably mounted between an operating position, in which said cover member covers the guide vane in a retracted position so as to ensure an aerodynamic profile during thrust, and a storage position, in which said cover member is offset from its operating position so that the guide vane is in the extended position. Such a cover member allows the aerodynamic profile of the air intake to be optimized in the retracted position.
According to one aspect, the guide vane extends into the annular cavity of the air intake in the retracted position. According to one aspect, the guide vane extends into an azimuthal cavity.
The invention also relates to an aircraft turbojet engine extending along an axis X oriented from upstream to downstream in which an internal air flow circulates from upstream to downstream during a thrust phase and a reverse air flow from downstream to upstream during a thrust reversal phase, said turbojet engine comprising a fan configured to perform a thrust reversal and a nacelle comprising an air intake, as previously set forth, so as to promote said thrust reversal, the guide vanes being positioned upstream of the fan.
According to one preferred aspect of the invention, the turbojet engine comprising fan vanes, the length of a guide vane is less than ⅓ of the length of a fan vane.
The invention also relates to a method for operating an air intake, as set forth above, in which at least one guide vane is in the retracted position during a thrust phase of the turbojet engine, the method comprising, during a thrust reversal phase of said turbojet engine, a step of moving the guide vane into the extended position so that the guide vane projectingly extends from the internal wall in a radially internal direction in order to guide the reverse air flow of the internal wall to promote the thrust reversal phase.
The invention will be better understood from the following description, which is given solely by way of example, and refers to the appended drawings given as non-limiting examples, in which identical references are given to similar objects and in which:
It should be noted that the figures set out the invention in detail to implement the invention, said figures may of course serve to further define the invention where appropriate.
With reference to
As illustrated in
In this example, the turbojet engine 1 comprises thrust reversing means, in particular, a variable pitch fan 11, or VPF, for reversing the air flow circulating in the turbojet engine 1 and thus creating a reverse thrust allowing deceleration of the aircraft during landing.
According to the invention, with reference to
Thus, the air intake 2 allows for two different roles during thrust and during reverse thrust. In the retracted position A, the guide vane 3 does not affect the aerodynamic performance of the leading edge 23 which has an aerodynamic profile. The thrust is thus optimal.
Following its movement in the extended position B, each guide vane 3 allows for guiding the F-INV air flow which has been previously twisted by the fan 11 during a thrust reversal phase. A guided reverse air flow F-INVR thus circulates on the internal wall 21 of the air intake 21 which optimally opposes to the upstream air flow F. The performance of the reverse thrust phase is optimal.
According to the invention, for the thrust reversal phase, the guide vanes 3 perform a function analogous to the vanes located in the secondary stream and known to those skilled in the art under the abbreviation “Outlet Guide Vane”.
With reference to
Preferably, in order to modify guiding of the reverse air flow differently at the circumference of the air intake, the guide vanes 3 may not be identical or may be moved to different extension degrees. This advantageously allows the circumferential environment of the air intake to be taken into account, in particular to limit acoustic nuisance by directing the reverse air flow.
Preferably, the guide vanes 3 are organized in rows, each row comprising a plurality of guide vanes 3 positioned at the same radial distance from axis X. Alternatively, the guide vanes 3 may be positioned at different radial distances to vary the guiding of the reverse air flow differently at the circumference of the air intake. As an example, a single row is represented in
The axial position of the guide vanes 3, that is the distance from the fan 11, can vary depending on the application. Indeed, the closer the guide vanes 3 are to the fan 11, the more effective the guiding. Conversely, the further the guide vanes 3 are from the fan 11, the lower the noise generated.
With reference to
In this example, the air intake 2 comprises a moving member 9 to translationally move the guide vane 3 from the retracted position A to the extended position B. By way of example, this moving member 9 is in the form of a moving member 9 which is active, for example, in the form of a pneumatic, hydraulic, electric or other actuator in order to allow a movement as a result of receiving a control command from a calculator. Preferably, the moving member 9 also allows the guide vane 3 to be translationally moved from the extended position B to the retracted position A. The air intake 2 may comprise one or more controllable moving members 9.
As illustrated in
Still referring to
According to an optional aspect of the invention, with reference to
Preferably, the cover member 4 is made of a material identical to the internal wall 21 and its shape is chosen to be an extension of the internal wall 21 so that the aerodynamic profile of the air lip 2 remains unchanged during thrust.
In the example of
In the extended position B, as illustrated in
Alternatively, with reference to
Still referring to
In
With reference to
Similarly, with reference to
A guide vane rotatably driven about an axis of rotation substantially orthogonal to axis X (longitudinal rotation) has been set forth, but it goes without saying that the axis of rotation could be substantially parallel to axis X (lateral rotation). According to this alternative, the guide vane 3 is preferably placed in an azimuthal cavity in the retracted position A, in particular, pressed against the internal wall 21.
Rotational kinematics is advantageous because it limits radial overall size in the retracted position A. It goes without saying that the guide vane 3 could also be moved according to a kinematics combining rotation and translation.
According to one preferred aspect of the invention, the guide vane 3 forms a portion of the internal wall 21 that is pivoted in the extended position. In other words, the guide vane 3 is not located within the annular cavity 20 formed between the internal wall 21 and the external wall 22.
A guide vane 3 that is translationally extended along a substantially radial direction has been represented in
According to one aspect of the invention, extension of a guide vane 3 may be achieved by a moving member that is passive.
With reference to
Preferably, the pneumatic conduit 9′ is connected to an overpressure source 90′ which, due to the pressure difference between the air stream and the pneumatic conduit 9′, allows the guide vane 3 to be moved by suction. The pressure in the air stream is lower due to the acceleration of the reverse air flow F-INV by the fan 11. In this example, the suction extension can be partial, as the aerodynamic forces in the air stream allow a full extension. A passive moving member is suitable for both translational and rotational kinematics.
According to one aspect of the invention, the pneumatic conduit 9′ is fed by the reverse air flow. Preferably, during a thrust phase, the reverse air flow is no longer present, which automatically moves the guide vane 3 into the retracted position A.
A method for operating the air intake 2 according to the invention previously set forth is described below. For the sake of clarity, the movement of a single guide vane 3 is set forth, but it goes without saying that several guide vanes 3 may be moved concomitantly or sequentially.
During thrust, the fan 11 accelerates an internal air flow F-INT from upstream to downstream which is guided by the air intake 2 having an aerodynamic profile that promotes thrust. The guide vanes 3 are in the retracted position A during the thrust of the turbojet engine 1, so that the air intake 2 has an aerodynamic profile in order to guide the air flow. The use of a cover member 4 ensures an optimal aerodynamic profile during thrust.
During a thrust reversal phase of said turbojet engine 1, in particular following a change in the pitch of the fan vanes 11, the moving member(s) 9 move the guide vanes 3 into an extended position B, in which the guide vanes 3 projectingly extend from the internal wall 21 in a radially inward direction in order to guide the reverse air flow F-INV from the internal wall 21 to promote the thrust reversal phase.
Advantageously, such an operating method provides the aircraft with good performance both in thrust, where the internal air flow F-I NT is kept unchanged, and in reverse thrust, where the guide vanes 230 allow the reverse air flow F-INV to be untwisted. With reference to
According to one aspect of the invention, only part of the guide vanes 3 is moved during the movement step to adapt to different operating conditions, for example, during braking.
By virtue of the invention, the performance of the turbojet engine 1 is significantly improved during the thrust reversal phase while maintaining the existing performance during the thrust phase.
Number | Date | Country | Kind |
---|---|---|---|
FR1904094 | Apr 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/060040 | 4/8/2020 | WO | 00 |