The present invention relates to an air intake structure for hand dryers of high airflow pressure to provide an air inlet structure for a hand dryer.
These days people have increasingly high expectation on life quality. As a result, they also have a higher hygienic demand in daily activities and facilities, notably public toilet facilities. In the past, many public toilet facilities have to be manually operated with hands. Now, many of them are operable automatically by detecting user's use conditions through sensors. Hence in the past users have to shake hands after washing and result in spraying water around, then an improvement was made by providing retrievable paper towels for wiping hands. These days environmental protection awareness increases gradually and protection of trees becomes an increasing focus. Thus the paper towels are gradually displaced by hand dryers.
There are numerous types of hand dryers on the market. They mainly adopt a principle of using a motor to rotate blades to suck in air, heat the air and deliver the heated air. Namely the whole operation includes three elements of “air intake”, “heating” and “air delivery”. To dry the hands within a short time period with reasonable power consumption, every producer tries to alter and adjust the aforesaid three elements. For instance, to save energy consumption in the “heating” element, the heating temperature is lowered but the power for “air delivery” could increase to blow the hands with a greater airflow speed to dispel water from the hands. Some hand dryers attempt to increase the “heating” temperature but reduce the power of “air delivery” to dry the hands. Some other hand dryers focus on design of “air intake” location to recycle the heated air and save energy. However, trying to achieve an effective balance of the three elements of “air intake”, “heating” and “air delivery” remains the core technique of all types of hand dryers. As energy saving is a prevailing trend now, to meet this end design has gradually shifted to delivering high pressure airflow to reduce electric power consumption in the “heating” step. Thus drying hands with high pressure airflow becomes an increasing focus in the design of hand dryers at present.
While designing the hand dryer with a high airflow pressure to save electric power is the prevailing trend at present, it also creates noise problem. The biggest sources of the noise are vibration and airflow shearing caused by the air inlet structure. The conventional air inlet structure adopts a mesh type or shutter type structure to avoid sucking in external articles and prevent incidental intrusion of user's hands.
To reduce the airflow shearing at the air inlet, some hand dryers provide a longer air passage between the air inlet and motor blades to inhibit noise generation. Such an approach greatly increases the size of the hand dryer. The position of the air inlet is restricted and motor air intake efficiency also suffers, that result in even more shortcomings. Hence trying to make structural change to reduce the noise is not a desirable approach. The present hand dryers of high airflow pressure mostly have the air inlet close to the motor blades to increase air intake efficiency. There is no effective way to reduce the noise. The noise problem still exists to date. To provide an air intake structure that can inhibit noise in the condition of a shorter distance between the air inlet and motor is still an issue remained to be resolved.
In view of the conventional hand dryers of high airflow pressure that cannot effectively reduce the noise generated at the air inlet, the primary object of the present invention is to provide an air intake structure for hand dryers of high airflow pressure to inhibit noise in a condition of having an air inlet located close to a motor.
To achieve the foregoing object, the air intake structure according to the invention is located on an airflow guiding casing of a hand dryer communicating with gaps formed between motor blades of a motor and a motor air suction port formed in the airflow guiding casing.
It includes a circular flow directing frame formed with an arched profile and protruded from the airflow guiding casing to form an air inlet communicating with the motor air suction port and a flow directing chamber formed between one surface end of the air inlet and an outmost surface end of the flow directing frame, an axle formed with a curved profile and located in the center of the flow directing chamber, and a plurality of flow directing blades extended from the axle to connect to the flow directing frame and formed with the same curved direction to direct airflow and a curved edge on the rims thereof. The curved direction of the flow directing blades is opposite to the curved direction of the motor blades.
By means of the construction set forth above, the invention can provide at least the following advantages:
1. With the flow directing blades and the motor blades formed in opposite directions, a contra-rotating propellers (CRP) structure is formed so that the airflow sucked in by the motor is converged at a greater degree and air intake efficiency improves. Such a structure also can inhibit noise generated by airflow scattering.
2. The flow directing frame, axle and rim edges of the flow directing blades are formed with the curved profiles, airflow shearing noise that might otherwise occur due to sharp edges of the air intake structure can be reduced.
3. By providing the aforesaid two types of noise inhibiting structures, design of the hand dryer of high airflow pressure is not restricted by the location of the air intake structure. The air intake structure can be located on the hand dryer wherever desired, or close to the motor. Thus the hand dryer can be made smaller and also to inhibit noise generation at the same time.
The foregoing, as well as additional objects, features and advantages of the invention will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
The present invention provides an air intake structure for hand dryers of high airflow pressure. Please refer to
Also referring to
By means of the structure of the air intake structure 100 previously discussed, noise generation can be reduced. The invention can be adopted on various types of hand dryers, and is especially desirable to the hand dryers of high airflow pressure that require the air intake structure 100 close to the motor blades 201. Refer to
Referring to
While the preferred embodiments of the invention have been set forth for the purpose of disclosure, modifications of the disclosed embodiments of the invention as well as other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3761203 | Neidhardt et al. | Sep 1973 | A |
7083379 | Nikpour et al. | Aug 2006 | B2 |
20070059161 | Bouru | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
60 013998 | Jan 1985 | JP |
60 073096 | Apr 1985 | JP |
08196470 | Aug 1996 | JP |
09 238866 | Sep 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20100269364 A1 | Oct 2010 | US |