This patent invention, as stated in the title is an air jet propeller for propelling and stabilizing aircrafts. This propeller counts with a system in whose inner centre lies an helical round honeycomb rotor connected to a highly revolutionized explosion engine; its body has a set of windows and openings combined with doors, hatches and butterflies allowing stability and balance in aircraft propulsion as well as facilitating landing and taking off processes as a fairly small landing strip is necessary and relatively low speed is requested.
Two individual techniques are used in addition to aircraft propulsion in order to facilitate taking off and landing processes and cannot be used together. In landings, a breaking parachute can be used if required in addition to speed reduction; no auxiliary methods are needed in supporting propulsion but new explosion engines with propellers or reaction engines could be installed ensuring low manufacturing cost.
The air jet helical rotor placed in the central point of the machinery has been extensively described in the Patent numbered PCT/ES 2004/000087 and named “Round honeycomb rotor” which is currently under procedure being Felix Sánchez Sánchez its inventor. It is being presented as an important accessory for this patent having been designed to fit all types of flying aircrafts. It is provided with an explosion engine requiring many revolutions per minute (r.p.m.); the entrance of air is located in the front of the aircraft through the spaces left by the nerves. On the one hand this entrance of air is produced by two effects, 1° by the machine speed itself and 2° by the absorption or suction produced by the helical round honeycomb rotor. On the other hand a butterfly type door orientates the entrance of this air in two different directions being horizontal the first air entrance position as it is fundamental for the well functioning of aircrafts; the second position whose main function is to completely shut down the horizontal air entrance producing an instant perpendicular change in the butterfly position which allows the operating of upwards power by absorption. This first body is followed by the rotor itself whose cube has been fixed to the previously mentioned explosion engine and whose spinning is being protected by the machinery second body which has a cylindrical tubular enveloping shape. The explosion engine has been permanently fixed on the third body made of a tubular figure with conical base and the reduction of pressured air exiting the conical base added to the number of rotors will be crucial in determining the aircraft speed. Thanks to this conical shape the air pressure produced by the helical round honeycomb rotor increases having the conical base tube a butterfly type door located in its exit responsible for orientating the air in two different directions, backwards as a fundamental propeller for the well functioning of aircrafts and downwards as such air jet produces a supporting force and therefore a balance in the back of aircrafts. These two opposite forces applied in the front (upwards) and the back (downwards) of the aircraft create a balance that allows aircrafts to fly at low speed and therefore facilitates landing on very small landing strips with minimum speed (km/h). This is even applicable to very small aircrafts that could land in the way helicopters do, that is why there is in the lower back of the aircraft a door with two positions: the first one is to orientate the air jet that flows perpendicularly due to the butterfly closing the air jet exit area and creating a supporting source of power. In the second position (45° approximately) it makes the air jet flow in the opposite direction providing the aircraft with a breaking power and allowing it to move around once landed without additional mechanical support. At the same time the cylinders with conical base shape have on one side of their back small doors that when opened allow the air jet to produce a right or left movement depending on which door is opened and make the aircraft land or take off with a 90°% reduction in air pollution as for reactors concern. All of this facilitates the implementation of shorter landing strips which could result in airports being wider than larger which would allow several aircrafts to take off or land at the same time and also reduce landing and taking off risks due to speed dropping in both processes.
The lower part is partially closed by the cap (6.2) followed by a ring (6.4) from which 3 nerves (6.5) are connected to the cube or nucleus (6.6) that supports the pilot bearing (11) which itself supports the rotor (10) axis (2.1) enveloped in a cover (7).
The axis (2.1) fits into the explosion engine (2) which leans against the supporting nerves (2.2) fixed into the back pipe (8) and supporting on its outer sides small hatchways closed down by two butterfly type doors (9).
These can be on one or both sides to allow orientated maneuvering while at the end of this back pipe, and underneath it lays an opening directed by a gate (5) which has in its central part a rotating tray operating as a close down or open up butterfly (4) for the exit of air.
The aerodynamic body that produces the propulsion effect through the helical round honeycomb rotor is composed of three cylindrical bodies: the first one belongs to the head (6) with an oval profile formed with series of nerves (6.1) and a butterfly closing in the air main entrance area (3) and closed in the bottom (6.3). This head connects with the second body consisting of the rotor enveloping cover (10) with a perfect cylindrical shape which is not subject of description here as it is totally integrated in the patent PCT/ES 2004/00087. An explosion engine (2) is fixed in its axis leaning against the nerves (2.1). The aerodynamic body (1) is followed by the third body or back (8) with a conical base shape with small hatchways, swinging butterfly type doors (9) and in its central part a rotating tray (4) capable of entirely opening or closing down the circular body surface.
In the same position on the lower part we see a multi-graduated doorway (5) whose objective is to give support by inverting the direction of the air jet and allowing a backward gearing of the aircraft when located on the landing strip.
This air jet propeller (1) in its practical use is fitted on an aircraft, with one, two, three or more sets; the helical round honeycomb rotor acts out as a generator to allow propulsion with a lesser pollution level and petrol consumption saving. Thanks to the different hatchways, gates and butterflies better balance and stability are achieved in all the maneuvering movements.
Once the industrial object of this patent has been clearly and widely described as to allow its exploitation, I declare it new and of my own invention except for its accidental details such as shape, size, materials and manufacturing procedures. They can be manufactured with any geometrical regular or irregular shape as well as being readapted within the unchangeable specialty that is resumed in the following:
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/ES04/00454 | 10/29/2004 | WO | 00 | 1/25/2008 |