The present invention relates to air motors and valves for a piston pump.
In one embodiment, the invention provides an air motor including a motive fluid inlet that receives a flow of motive fluid, a cylinder, and a piston within the cylinder. The piston divides the cylinder into an upper chamber above the piston and a lower chamber below the piston. A valve chamber includes a pilot chamber portion. A spool valve is shiftable to a first position in response to motive fluid pressurizing the pilot chamber portion, and a second position in response to the pilot chamber portion being at atmospheric pressure. The spool valve includes a reduced diameter section and an enlarged diameter section. The enlarged diameter section is exposed to the pilot chamber portion. A D-valve plate includes a first D-valve port that communicates with the upper chamber, a second D-valve port that communicates with the lower chamber, and a D-valve exhaust port that communicates with atmosphere. A D-valve has a flat surface surrounding a concave surface, and the flat surface is in sliding contact with the D-valve plate and the concave surface facing the D-valve plate. The D-valve is connected via a lost motion interconnection to the reduced diameter section of the spool valve. The D-valve shifts with the spool valve between first and second positions corresponding to the respective first and second positions of the spool valve. The D-valve uncovers the first D-valve port when the D-valve is in the first position to introduce motive fluid into the upper chamber. The concave surface of the D-valve places the second D-valve port in communication with the D-valve exhaust port to place the lower chamber in communication with the atmosphere when the D-valve is in the first position. The D-valve uncovers the second D-valve port when the D-valve is in the second position to introduce motive fluid into the lower chamber, and the concave surface of the D-valve places the first D-valve port in communication with the D-valve exhaust port to place the upper chamber in communication with the atmosphere when the D-valve is in the second position. A pilot port is fluidly connected to the pilot chamber portion by a two-way pilot conduit, and a valve is connected to the pilot port. The valve shifts between a first position, in which a flow of motive fluid is directed into the pilot port, through the two-way pilot conduit and into the pilot chamber portion, and a second position, in which the flow of motive fluid is inhibited from flowing into the pilot port through the two-way pilot conduit and into the pilot chamber portion and in which fluid in the pilot chamber portion flows out through the two way pilot conduit and is directed by the valve to exhaust. The valve is connected to a programmable logic controller that actuates the valve between the first position and the second position. An output rod is interconnected for reciprocal movement with the piston and adapted to perform work.
In some embodiments, the invention provides a pump assembly including a motive fluid inlet that receives a flow of motive fluid, an air motor including a motive fluid inlet that receives a flow of motive fluid, a cylinder, and a piston within the cylinder. The piston divides the cylinder into an upper chamber above the piston and a lower chamber below the piston. A valve chamber includes a pilot chamber portion. A spool valve is shiftable to a first position in response to motive fluid pressurizing the pilot chamber portion, and a second position in response to the pilot chamber portion being at atmospheric pressure. The spool valve includes a reduced diameter section and an enlarged diameter section. The enlarged diameter section is exposed to the pilot chamber portion. A D-valve plate includes a first D-valve port that communicates with the upper chamber, a second D-valve port that communicates with the lower chamber, and a D-valve exhaust port that communicates with atmosphere. A D-valve has a flat surface surrounding a concave surface, and the flat surface is in sliding contact with the D-valve plate and the concave surface facing the D-valve plate. The D-valve is connected via a lost motion interconnection to the reduced diameter section of the spool valve. The D-valve shifts with the spool valve between first and second positions corresponding to the respective first and second positions of the spool valve. The D-valve uncovers the first D-valve port when the D-valve is in the first position to introduce motive fluid into the upper chamber. The concave surface of the D-valve places the second D-valve port in communication with the D-valve exhaust port to place the lower chamber in communication with the atmosphere when the D-valve is in the first position. The D-valve uncovers the second D-valve port when the D-valve is in the second position to introduce motive fluid into the lower chamber, and the concave surface of the D-valve places the first D-valve port in communication with the D-valve exhaust port to place the upper chamber in communication with the atmosphere when the D-valve is in the second position. A pilot port is fluidly connected to the pilot chamber portion by a two-way pilot conduit, and a valve is connected to the pilot port. The valve shifts between a first position, in which a flow of motive fluid is directed into the pilot port, through the two-way pilot conduit and into the pilot chamber portion, and a second position, in which the flow of motive fluid is inhibited from flowing into the pilot port through the two-way pilot conduit and into the pilot chamber portion and in which fluid in the pilot chamber portion flows out through the two way pilot conduit and is directed by the valve to exhaust. The valve is connected to a programmable logic controller that actuates the valve between the first position and the second position. An output rod is interconnected for reciprocal movement with the piston and adapted to perform work.
In some embodiments, the invention provides a method of retrofitting a mechanically-actuated air motor. The method includes providing an air motor having a motive fluid inlet that receives a flow of motive fluid, a cylinder, and a piston within the cylinder. The piston divides the cylinder into an upper chamber above the piston and a lower chamber below the piston. A valve chamber includes a pilot chamber portion. A spool valve is shiftable to a first position in response to motive fluid pressurizing the pilot chamber portion, and a second position in response to the pilot chamber portion being at atmospheric pressure. The spool valve includes a reduced diameter section and an enlarged diameter section. The enlarged diameter section is exposed to the pilot chamber portion. A D-valve plate includes a first D-valve port that communicates with the upper chamber, a second D-valve port that communicates with the lower chamber, and a D-valve exhaust port that communicates with atmosphere. A D-valve has a flat surface surrounding a concave surface, and the flat surface is in sliding contact with the D-valve plate and the concave surface facing the D-valve plate. The D-valve is connected via a lost motion interconnection to the reduced diameter section of the spool valve. The D-valve shifts with the spool valve between first and second positions corresponding to the respective first and second positions of the spool valve. The D-valve uncovers the first D-valve port when the D-valve is in the first position to introduce motive fluid into the upper chamber. The concave surface of the D-valve places the second D-valve port in communication with the D-valve exhaust port to place the lower chamber in communication with the atmosphere when the D-valve is in the first position. The D-valve uncovers the second D-valve port when the D-valve is in the second position to introduce motive fluid into the lower chamber, and the concave surface of the D-valve places the first D-valve port in communication with the D-valve exhaust port to place the upper chamber in communication with the atmosphere when the D-valve is in the second position. A pilot port is fluidly connected to the pilot chamber portion by a two-way pilot conduit, and a valve is connected to the pilot port. The valve shifts between a first position, in which a flow of motive fluid is directed into the pilot port, through the two-way pilot conduit and into the pilot chamber portion, and a second position, in which the flow of motive fluid is inhibited from flowing into the pilot port through the two-way pilot conduit and into the pilot chamber portion and in which fluid in the pilot chamber portion flows out through the two way pilot conduit and is directed by the valve to exhaust. The valve is connected to a programmable logic controller that actuates the valve between the first position and the second position. An output rod is interconnected for reciprocal movement with the piston and adapted to perform work. The method further includes removing a pilot cover from a valve housing, removing a pilot valve plate having a first pilot port that communicates with the pilot chamber portion and a second pilot port that communicates with atmosphere, blocking an opening between the pilot port and a pilot exhaust conduit, re-connecting the pilot cover to the valve housing, removing a pipe plug from a pilot port on the valve housing, inserting a conduit into the pilot port, coupling a valve to the conduit, fluidly connecting the valve to a source of motive fluid, and controlling reciprocation of the piston with the valve.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
A supply of motive fluid 145 communicates with the top and bottom end of each of the first and second rams 130 via ram hoses 150. In this disclosure, the term “motive fluid” means any fluid that is used to perform work. Motive fluid includes but is not limited to compressed air. A control handle 155 on the supply of motive fluid 145 is used to direct motive fluid to either the bottom end of the rams 130 or the top end of the rams 130, to respectively raise and lower the air motor 125 and piston pump 120 with respect to the base plate 135. Motive fluid is provided to the air motor 125 from the supply of motive fluid 145 via a motor hose 160. The air motor 125 operates under the influence of the motive fluid to operate the piston pump 120.
The piston pump 120 includes a wiper assembly 165, a pump cylinder 170, and an outlet 175. In operation, the rams 130 are raised such that the wiper assembly 165 is lifted a sufficient distance off the base plate 135 to accommodate a container of fluid to be pumped. The wiper assembly 165 is sized to fit within the container of fluid (e.g., a 5-gallon bucket, a barrel, or other container). When it is time to pump the fluid out of the container, the rams 130 are permitted to lower under the influence of gravity or are actively lowered by motive fluid being supplied to the tops of the rams 130. As the rams 130 are lowered, the wiper assembly 165 is pushed down into the container, with the wiper 165 pushing down on the fluid to be pumped. This feeds the fluid to be pumped into the pump cylinder 170.
At the same time as the rams 130 are lowered, motive fluid is supplied to the air motor 125 and the air motor 125 drives operation (i.e., reciprocation) of the piston pump 120. Within the pump cylinder 170, one or more one-way valve(s) reciprocate under the influence of the air motor 125 to force fluid up to the outlet 175. From the outlet 175, the fluid to be pumped is directed by hoses or other conduits to a desired destination. Once the wiper 165 has bottomed out in the container, or it is otherwise desired to raise the wiper 165 out of the container, the supply of motive fluid 145 provides motive fluid into the container under the wiper 165 by way of a hose 180. This supply of motive fluid to the container permits the wiper 165 to be extracted from the container without creating a vacuum in the container that might lift the container.
With reference to
A valve chamber 355 is defined within the valve housing 310 between the manifold cover 315 and the pilot cover 325. Within the valve chamber 355 is a valve assembly, which includes a spool valve 360, a D-valve 370, a D-valve plate 375, a pilot valve 380, and a pilot valve plate 385. The spool valve 360 actually an assembly of parts, some of which will be described in more detail below. The spool valve 360 is generally centered within the valve chamber 355. The D-valve 370 and D-valve plate 375 are on the manifold side 340 of the valve housing 310, and the pilot valve 380 and pilot valve plate 385 are on the pilot side 345 of the valve housing 310.
Turning now to
The D-valve plate 375 includes a first D-valve port 455, a second D-valve port 460, and a D-valve exhaust port 465 between the first and second ports 455, 460. The first D-valve port 455, second D-valve port 460, and D-valve exhaust port 465 of the D-valve plate 375 register with the upper chamber port 410, lower chamber port 415, and the manifold exhaust port 420, respectively, in the manifold cover 315. The pilot valve plate 385 includes a first pilot port 470 and a second pilot port 475. The two-way pilot conduit 440 and pilot exhaust conduit 445 register with the first pilot port 470 and second pilot port 475, respectively.
The spool valve 360 includes an upper portion with a reduced-diameter section 480, a lower portion with an enlarged-diameter section 485, and a cup or cylinder 487 in which the enlarged-diameter section 485 reciprocates. The enlarged-diameter section 485 includes a blind bore 490. A cover or washer 495 secured across the opening of the blind bore 490 and held in place with a snap ring. A cup seal 510 on the outside of the enlarged-diameter section 485 creates a seal between the spool valve 360 and the valve housing 310. The portion of the valve chamber 355 below the cup seal 510 and outside of the cylinder 487 defines a pilot chamber 515 Immediately below the cup seal 510 is a vent bushing 517 which communicates between the inside of the cylinder 487 and the dedicated exhaust conduit 452. As a result, the inside of the cylinder 487 is constantly in communication with atmosphere through the vent bushing, dedicated exhaust conduit 452, and pilot exhaust conduit 445. This accommodates displaced and sucked in air above the head of the enlarged diameter section 485 during reciprocating movement of the spool valve 360. The two-way pilot conduit 440 communicates with the pilot chamber 515 below the spool seal 518.
The D-valve 370 and pilot valve 380 are captured within a the reduced-diameter section 480 of the spool valve 360. As a result, the D-valve 370 and pilot valve 380 are coupled for reciprocation with the spool valve 360. The D-valve 370 includes a flat surface which abuts against and slides with respect to the D-valve plate 375. The D-valve 370 includes an arcuate, concave surface 520 that opens toward the D-valve plate 375. The flat surface of the D-valve surrounds the concave surface 520. The D-valve includes cut-outs 525 at the top and bottom which cause lost motion between the D-valve and the spool valve 360. The pilot valve 380 fits tightly within the reduced-diameter section 480 of the spool valve 360 so there is no lost motion. The pilot valve 380 includes an concave surface 530 that faces the pilot valve plate 385, and the pilot valve 380 includes a flat surface that surrounds the concave surface 530 and slides against the pilot valve plate 385.
Referring again to
With continued reference to
As illustrated in
The base 715 includes a base port 810 into which the lower end of the long drop tube 430 is received. The base port 810 places the lower chamber port 415 and long drop tube 430 in fluid communication with the lower chamber 640.
A cycle of operation of the valve assembly will now be described with reference to
The D-valve is pushed down by motive fluid pressure in the valve chamber 355 acting on the spool valve 360. The upper chamber 635 is vented to atmosphere through the top plate port 648, the short drop tube 425, the upper chamber port 410, the first D-valve port 455, the concave surface 520 of the D-valve 370, the D-valve exhaust port 465, the manifold exhaust port 420, and the muffler 435. At the same time, the D-valve has uncovered the second D-valve port 460, such that motive fluid flows out of the valve chamber 355, through the second D-valve port 460, through the lower chamber port 415, through the long drop tube 430, through the base port 810, and into the lower chamber 640. As a result of this valve positioning, the piston 620 rises, which causes the actuation rod 625 to rise, once a bottom end of the bore 725 contacts the second end 660 of the actuation rod 625.
In
The pilot valve covers the second pilot port 475 and pilot exhaust conduit 445. The lower chamber 640 is vented to atmosphere through the base port 810, the long drop tube 430, the lower chamber port 415, the second D-valve port 460, the concave surface 520 of the D-valve 370, the D-valve exhaust port 465, the manifold exhaust port 420, and the muffler 435. At the same time, the D-valve has uncovered the first D-valve port 455, such that motive fluid flows out of the valve chamber 355, through the first D-valve port 455, through the upper chamber port 410, through the short drop tube 425, through the top plate port 648, and into the upper chamber 635. As a result of this valve positioning, the piston 620 lowers, which causes the actuation rod 625 to lower.
The portion of the valve chamber 355 above the spool valve 360 is at motive fluid pressure, and the portion of the valve chamber 355 below the spool valve 360 (i.e., the pilot chamber 515) is at atmospheric pressure. As a result, the spool valve 360 is pushed down from the position in
In
In
In
In
In
With additional reference to
With continued reference to
The bleed valve 1240 includes a threaded cylindrical portion 1510, a seal 1520, a central bore 1530, and a hex head 1540 with vent ports 1550 (
As assembled and installed, the actuator insert 1310 is received within the actuator support 1280 (
The ball 1410 is received within the ball valve chamber 1290, with the key 1340 of the actuator insert 1310 received in the keyway 1440, such that the ball 1410 is coupled for rotation about the axis 1335 with the actuator assembly 1230. The seats 1420 and seals 1430 sit on opposite sides of the ball 1410 with the seats 1420 against the ball 1410. One of the seals 1430 sits against a wall of the ball valve chamber 1290. The other seal 1430 sits against the flat end of the cylindrical portion 1510 of the bleed valve 1240. The threaded portion 1510 of the bleed valve 1240 is threaded into the bleed valve port 1275. The seats 1420 and seals are ring-shaped and aligned along axis 1560, which is perpendicular to axis 1335. The seats 1420 support the ball for rotation about the axis 1335.
The first pressure adjustment assembly 1245 includes the pressure adjustment handle 240 described above, a push rod 1610, a main body 1620, a spring 1630, a washer/diaphragm 1640, and a seat 1650. The self-relieving valve assembly 1250 includes a needle 1660, a valve 1670, a spring 1690, and an end cap 1695. The main body 1620 and control handle 240 are mounted in an opening in the top of the housing 1225, and end cap 1695 is secured in an opening in the bottom of the housing 1225. The spring 1630 is between the top of the main body and the washer/diaphragm 1640. Upon rotation of the control handle 240, the control handle pushes the push rod 1610 down against the force of the spring 1630. On the lower side, the needle 1660 sits on top of the valve 1670. The spring 1690 is compressed between the valve 1670 and the end cap 1695, and biases the valve 1670 against a seat or rim 1710 in the housing 1225 to resist fluid flow past the valve 1670 and into the ball valve chamber 1290. Downward movement of the push rod 1610, under the influence of rotation of the control handle 240, eventually causes the push rod 1610 to push down on the needle 1660, which in turn causes the valve 1670 to unseat from the rim 1710 and open communication between the motive fluid inlet port 1270 and the ball valve chamber 1290. The degree to which the valve 1670 is unseated from the rim 1710 determines the pressure of motive fluid supplied to the ball valve chamber 1290 and ultimately to the rest of the air motor.
In operation, the ball 1410 is rotated about the axis 1335, under the influence of an operator pivoting the lever 1320, between an off position, an on position, and a bleed position. In all positions, the first aperture 1450 in the ball 1410 is aligned with and communicates with the pressure regulator outlet 1215 along axis 1335. As seen in
When the ball 1410 is rotated about axis 1335 to the on position, the first stop shoulder 1335a comes into contact with a stop on the housing 1225. In this position, the second aperture 1460 is aligned with the motive fluid inlet 1270, such that motive fluid is routed through the ball 1410 and into the air motor valve block assembly 215. The second aperture opens along axis 1560 in this position, toward the motive fluid inlet 1270.
When the ball 1410 is rotated to the bleed position, the second stop shoulder 1335b comes into contact with another stop or the same stop on the housing 1225. In this position, the second aperture 1460 is aligned with the bleed valve port 1275. In this position, motive fluid in the air motor 125 can flow out through the pressure regulator outlet 1215, the ball 1410, the bleed valve port 1275, the bore 1530 in the bleed valve 1240, and the vent ports 1550. The second aperture opens along axis 1560 in this position, toward the bleed valve port 1275. The bleed valve 1240 permits a user to manually de-pressurize the air motor 125 without requiring the user to disconnect the motor hose 160 from the air motor 125.
It is advantageous to combine the actuator assembly 1230, the ball valve assembly 1235, the bleed valve 1240, the first pressure adjustment assembly 1245, and the self-relieving valve assembly 1250 into a single housing 1225 to form a module, such as in the illustrated pressure regulator assembly 210. The modular pressure regulator assembly 210 can be bolted on to the air motor 125 as a single modular component, and can be removed from the air motor 125 as a single component. In embodiments that do not bolt the pressure regulator assembly 210 to the air motor 125, a pipe or conduit is connected directly to the motive fluid inlet 335. Such embodiments utilize a remote pressure regulator to regulate pressure and thus, throttle of the air motor 125. The pressure regulator assembly 210 is configured to be coupled directly to the motive fluid inlet 335, without requiring the use of a separate pipe or a quick coupler.
The inlet port 2135 is fluidly coupled to the motive fluid supply 145 (see
The outlet port 2140 is fluidly coupled to the air motor 2125. A tube connector 2175 is connectable to the outlet port 2140 to facilitate fluid connection between the solenoid valve 2130 and the air motor 2125. The illustrated tube connector 2175 is inserted into the pilot port 328, but other connections and configurations are possible.
The illustrated vent port 2145 includes a first portion 2180 and a second portion 2185. The first portion 2180 of the vent port 2145 is defined in the valve housing and fluidly coupled to the outlet port 2140, and the second portion 2185 of the vent port 2145 extends through the plunger 2150 and is vented to atmosphere.
The plunger 2150 includes a first end 2190, a second end 2195, an elongate portion extending between the first end 2190 and the second end 2195, a seal 2205 and a cap 2210. The first end 2190 has an increased diameter and supports the seal 2205. The second end 2195 supports the cap 2210.
The plunger 2150 is moveable between a first position and a second position. The illustrated first position is a closed position shown in
The illustrated spring 2155 encircles a portion of the plunger 2150 and engages at least one flange on the plunger 2150. In embodiments that utilize a normally-closed solenoid valve 2130, the spring 2155 biases the plunger 2150 toward the closed position (see
The coil winding 2160 encircles a portion of the plunger 2150. In embodiments that utilize a normally-closed solenoid valve 2130, the coil winding 2160, when actuated, moves the plunger 2150 against the bias of the spring 2155 and toward the open position (see
The electrical connector 2165 is electrically connected to the coil winding 2160. The electrical connector 2165 is configured for connection to a programmable logic controller 2215 (see
The air motor 125 includes the pipe plug 327 in the pilot port 328 (see
In order to retrofit the air motor 125 into the air motor 2125, an operator removes the pilot cover 325, and either plugs the first and second pilot ports 470 and 475, or removes and replaces the pilot valve plate 385 with a solid plate 2220. This closes off air flow from the two-way pilot conduit 440 out of the pilot exhaust conduit 445. The pilot valve 380 becomes substantially non-functional and can be removed, or can remain present within the air motor 125. In the case of a new construction air motor 2125, a solid plate 2220 is utilized and the pilot valve 380 is omitted. The actuation rod 625 can also be removed for a retro-fit of air motor 125, or can be omitted for a new construction air motor 2125.
The operation of the air motor 2125 is controlled by the valve 2130 and the programmable logic controller 2215.
As shown in
As shown in
The movement of the piston 620 in the cylinder 615 and the operation of the air motor 2125, are controlled by the valve 2130 and the programmable logic controller 2215 instead of the mechanical control of the air motor 125.
Thus, the invention provides, among other things, an electric control for an air motor. Various features and advantages of the invention are set forth in the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/050979 | 9/9/2009 | WO | 00 | 1/23/2014 |