The present invention relates to an air mover, and in particular to an air mover with two inlets.
A conventional air mover (for example, a carpet drier) has a motor, a fan, two inlets, and an outlet. Conventionally, the motor is disposed on one side of the air mover. This can cause the weight distribution of the conventional air mover to be uneven, and the air mover can be difficult to carry. Additionally, the motor and the fan are adjacent to one side of the air mover, and the intake flow rates at the two inlets are different. The great difference between the intake flow rates at the two inlets causes noise, and decreases the output flow rate of the air mover.
In one embodiment, an air mover is provided. The air mover includes a housing, a spacer, a co-axial motor, a first fan, and a second fan. The housing includes a first housing member and a second housing member, wherein a first inlet, a second inlet and an outlet are formed on the housing, the first inlet is formed on the first housing member and the second inlet is formed on the second housing member. The spacer is disposed between the first housing member and the second housing member. The co-axial motor includes a shaft, wherein the co-axial motor is disposed on the spacer, the shaft comprises a first free end and a second free end, the first free end extends in a first direction, and the second free end extends in a second direction. The first fan is connected to the first free end, wherein the first fan is located in a first chamber formed by the first housing member and the spacer, and the first fan corresponds to the first inlet. The second fan is connected to the second free end, wherein the second fan is located in a second chamber formed by the second housing member and the spacer, and the second fan corresponds to the second inlet.
In one embodiment, a first distance between the first free end and the spacer is equal to a second distance between the second free end and the spacer.
In one embodiment, the air mover further comprises a mounting base, wherein the spacer comprises a first surface and a second surface, the co-axial motor comprises a motor body, the mounting base is disposed on the second surface, the motor body passes through the spacer, and the mounting base affixes the motor body to the spacer.
In one embodiment, the co-axial motor comprises a cable, the cable is connected to the motor body, and the cable travels from the motor body, extends over the first surface, passes through a cable notch of the first housing member, and leaves the first chamber.
In one embodiment, the air mover further comprises at least one positioner, wherein the positioner is disposed on the first surface and restricts the cable.
In one embodiment, the air mover further comprises a controller, wherein the housing comprises a recess, the recess is formed above a seam line between the first housing member and the second housing member, the controller is embedded in the recess, the cable notch is located on the bottom of the recess, and the cable is coupled to the controller.
In one embodiment, the air mover further comprises a plurality of first bolts, the first housing member comprises a plurality of fastening bases, the second housing member and the spacer have a plurality of through holes, each first bolt passes through the corresponding through hole and is affixed to the corresponding fastening base, and the first bolts connect the second housing member, the spacer and the first housing member.
In one embodiment, the housing comprises a first rib, the first rib is formed on a seam line between the first housing member and the second housing member, and the first rib corresponds to the recess.
In one embodiment, the housing comprises a bottom surface, a plurality of supporting portions and a second rib, the supporting portions and the second rib are formed on the bottom surface, and the second rib is formed on a seam line between the first housing member and the second housing member.
In one embodiment, the spacer separates the first chamber and the second chamber, a first flow enters the first chamber through the first inlet and is impelled by the first fan to leave the first chamber via the outlet, and a second flow enters the second chamber through the second inlet and is impelled by the second fan to leave the second chamber via the outlet.
In one embodiment, on a projection plane, a reverse point is formed between a chamber profile of the first chamber and an outlet profile of the outlet, a tangent line of the chamber profile on the reverse point overlaps an edge of the spacer.
In one embodiment, the radius of the first fan is equal to the radius of the second fan.
In one embodiment, the size of the first inlet is equal to the size of the second inlet.
Utilizing the air mover of the embodiment of the invention, the co-axial motor is disposed on the spacer located in the center of the air mover, the weight distribution of the air mover is uniform, and the air mover can be easily carried. Additionally, the co-axial motor rotates the first fan and the second fan simultaneously, the flow rate of a first flow through the first inlet approximates to the flow rate of a second flow through the second inlet. The noise of the air mover is decreased, and the output flow rate of the air mover is increased. In one embodiment, the first distance is equal to the second distance, and the uniformity of the weight distribution and the intake flow rates are further improved.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The present invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
With reference to
Utilizing the air mover of the embodiment of the invention, the co-axial motor is disposed on the spacer located in the center of the air mover, the weight distribution of the air mover is uniform, and the air mover can be easily carried. Additionally, the co-axial motor rotates the first fan and the second fan simultaneously, the flow rate of a first flow through the first inlet approximates to the flow rate of a second flow through the second inlet. The noise of the air mover is decreased, and the output flow rate of the air mover is increased. In one embodiment, the first distance is equal to the second distance, and the uniformity of the weight distribution and the intake flow rates are further improved.
With reference to
With reference to
In the embodiment of the invention, the cable 33 extends over the first surface 21, and is restricted by the positioner 61. Therefore, the cable 33 is prevented from being interference with the neighboring elements during the assembling process of the air mover.
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
In the embodiment above, the first bolts 63 fastens the second housing member 12, the spacer 2 and the first housing member 11 simultaneously. The spacer 2, the first fan 41, the second fan 42 and the co-axial motor 3 can be firmly affixed. Additionally, the spacer 2 sufficiently separates the first chamber C1 from the second chamber C2, the flow field inside the first chamber C1 is separated from the flow field inside the second chamber C2, and the operation efficiency of the air mover is improved.
With reference to
With reference to
With reference to
Use of ordinal terms such as “first”, “second”, “third”, etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having the same name (but for use of the ordinal term).
While the invention has been described by way of example and in terms of the preferred embodiments, it should be understood that the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
201810190509.5 | Mar 2018 | CN | national |
This application is a Continuation-In-Part of pending U.S. patent application Ser. No. 16/201,118, filed Nov. 27, 2018 and entitled “air mover”, which claims priority of China Patent Application No. 201810190509.5, filed on Mar. 8, 2018, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2796745 | Rose | Jun 1957 | A |
2814432 | Eiserman | Nov 1957 | A |
2823852 | Busch | Feb 1958 | A |
7066720 | Cheng | Jun 2006 | B2 |
9091279 | Cui | Jul 2015 | B2 |
9109610 | Streng et al. | Aug 2015 | B2 |
9157441 | Dickinson et al. | Oct 2015 | B2 |
9458853 | Staniforth | Oct 2016 | B2 |
9574568 | Dickinson | Feb 2017 | B2 |
9863698 | Turner | Jan 2018 | B1 |
11041508 | Chen | Jun 2021 | B2 |
20010012487 | Takura | Aug 2001 | A1 |
20100226802 | Kawamura | Sep 2010 | A1 |
20110140553 | Ou | Jun 2011 | A1 |
20120114512 | Lofy | May 2012 | A1 |
20130216410 | Patterson et al. | Aug 2013 | A1 |
20190277305 | Chen | Sep 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210277904 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16201118 | Nov 2018 | US |
Child | 17327127 | US |