The development is related to air moving devices, in particular to air moving devices having a bypass intake for introducing a second flow path of air into the device.
Air moving devices may be used to move air within enclosures. The devices may be positioned at or near the ceiling of an enclosure to destratify thermal gradients in the air, such as to mix warmer upper air with cooler lower air. The devices require power to rotate a blade to generate a thrust with the moving air.
The embodiments disclosed herein each have several aspects no single one of which is solely responsible for the development's desirable attributes. Without limiting the scope of this disclosure, its more prominent features will now be briefly discussed. After considering this discussion, and particularly after reading the section entitled “Detailed Description,” one will understand how the features of the embodiments described herein provide advantages over existing systems, devices and methods for air moving devices.
The following description includes non-limiting examples of some embodiments. For instance, other embodiments of the described systems, devices and methods may or may not include the features described herein. Moreover, described advantages and benefits may apply only to certain embodiments and should not be used to limit the disclosure.
An aspect of the invention is the recognition that existing solutions for air moving devices have high power requirements for a given thrust and/or generate a low thrust for a give power input. However, improvements of existing solutions for air moving devices would be desirable.
In one aspect, an air moving device comprises a housing, an impeller assembly, and a secondary flow path. The housing extends axially and has an upper portion and a lower portion. The impeller assembly is supported by the housing and is configured to rotate a blade to cause air to enter the housing through the upper portion and exit the housing through the lower portion. The upper portion has a primary inlet, an upper inner sidewall, and an upper outer sidewall. The upper inner sidewall extends from the primary inlet toward the lower portion to a lower inner edge, and the upper outer sidewall is located radially outward from the inner upper sidewall and extends from the primary inlet toward the lower portion to a lower outer edge. The inner sidewall defines an upper region of a primary flow path extending through the upper portion, with the upper region having a first width. The lower portion has a lower outer sidewall extending from an upper edge to a primary outlet. The lower outer sidewall is located toward the primary outlet from the outer sidewall of the upper portion, and the lower outer sidewall defines a lower region of the primary flow path extending through the lower portion, with the lower region having a second width that is greater than the first width. The secondary flow path extends from an annular secondary inlet of the housing to an annular inner outlet that is in fluid communication with the primary flow path. The annular secondary inlet is located between the lower outer edge of the upper outer sidewall and the upper edge of the lower outer sidewall. The annular inner outlet is located between the lower outer sidewall of the lower portion and the lower inner edge of the upper inner sidewall.
Various embodiments of the various aspects may be implemented. The upper inner sidewall of the upper portion may form a nozzle. An axial distance from the primary inlet to the lower outer edge of the lower outer sidewall may be greater than or equal to an axial height of the annular secondary inlet. The axial height of the annular secondary inlet may extend from the lower outer edge of the upper outer sidewall to the upper edge of the lower outer sidewall. The air moving device may further comprise a plurality of longitudinal stator vanes, with each vane extending from an upper curved portion of the vane located within the upper region of the primary flow path to a first bottom edge of the vane at the primary outlet located within the lower region of the primary flow path. The air moving device may further comprise a plurality of longitudinal ribs, with each rib extending between the upper inner sidewall and the upper outer sidewall along the secondary flow path to a second bottom edge of the rib located within the lower region of the primary flow path. The air moving device may further comprise a plurality of longitudinal stator vanes extending from within the upper region of the primary flow path to within the lower region of the primary flow path. The air moving device may further comprise a plurality of longitudinal ribs extending between the upper inner sidewall and the upper outer sidewall along the secondary flow path. The upper portion and the lower portion may be integral.
In another aspect, an air moving device comprises an annular housing, an impeller assembly, and a secondary flow path. The annular housing extends axially from a primary inlet to a primary outlet and defines a primary flow path from the primary inlet to the primary outlet. The impeller assembly is coupled with the housing and is configured to rotate a blade to cause air to enter the housing through the primary inlet, flow along the primary flow path, and exit the housing through the primary outlet. The secondary flow path extends from an annular secondary inlet to an inner outlet, with the annular secondary inlet defined by an annular outer sidewall of the housing and located toward the primary outlet from the primary inlet of the housing, and the inner outlet located adjacent the primary flow path within the housing.
Various embodiments of the various aspects may be implemented. An upper region of the primary flow path located closer to the primary inlet than to the primary outlet may have a first cross-sectional area, a lower region of the primary flow path located closer to the primary outlet than to the primary inlet may have a second cross-sectional area, and the first cross-sectional area may be less than the second cross-sectional area. An axial distance from the primary inlet to an upper edge of the annular secondary inlet may be greater than or equal to an axial height of the annular secondary inlet. An upper region of the primary flow path located closer to the primary inlet than to the primary outlet may define a first diameter, a lower region of the primary flow path located closer to the primary outlet than to the primary inlet may define a second diameter, and the first diameter may be less than the second diameter. The upper portion of the housing may form a nozzle. An axial distance from the primary inlet to an upper edge of the annular secondary inlet may be greater than or equal to an axial height of the annular secondary inlet. The air moving device may further comprise a plurality of longitudinal stator vanes extending within the primary flow path. The air moving device may further comprise a plurality of longitudinal ribs extending within the secondary flow path. The air moving device may further comprise a plurality of longitudinal stator vanes extending within the primary flow path and that are radially aligned with the plurality of longitudinal ribs.
In various embodiments of the various aspects, an axial distance from the primary inlet to an upper edge of the annular secondary inlet may be greater than or equal to 80% of an axial height of the annular secondary inlet. The axial distance from the primary inlet to the upper edge of the annular secondary inlet may be greater than the axial height of the annular secondary inlet. The annular secondary inlet may extend an axial distance D2, the secondary flow path may have an axial portion with a radial width of distance D5, and D2 may be greater than or equal to 70% of D5. D2 may be 80% of D5. The air moving device may further comprise an upper inner sidewall that extends along an inner side of the secondary flow path to a lower edge, with the primary inlet located an axial distance D1 from an upper edge of the annular secondary inlet, the annular secondary inlet extending an axial distance D2, the lower edge of the upper inner sidewall located an axial distance D3 from the primary inlet, and where D1+D2≤1.1×D3. In some embodiments D1+D2≤D3. An upper-most portion of the primary inlet may be located the axial distance D1 from the upper edge of the annular secondary inlet, and the lower edge of the upper inner sidewall may be located the axial distance D3 from the upper-most portion of the primary inlet. An upper-most portion of the blade may be located an axial distance D4 from the primary inlet, and D4 may be greater than or equal to 2 inches. The upper-most portion of the blade may be located the axial distance D4 from an upper-most portion of the primary inlet. The primary inlet may be located an axial height H from the primary outlet, the primary inlet has a radial opening equal to a width W1, and wherein H is at least 75% of W1. H may be greater than or equal to W1. H may be greater than 1.25×W1.
In another aspect, an air moving device comprises a cowling, a lower sidewall, an impeller assembly, and a secondary flow path. The cowling defines a primary inlet and an upper region of a primary flow path having a first width. The lower sidewall is coupled with the cowling and defines a lower region of the primary flow path and a primary outlet. The lower region of the primary flow path has a second width that is greater than the first width. The impeller assembly is configured to rotate a blade to cause air to enter the primary inlet and exit the primary outlet. The secondary flow path extends from an annular secondary inlet to an inner outlet, with the annular secondary inlet defined by the cowling and the lower sidewall and located toward the primary outlet from the primary inlet, and the inner outlet located adjacent the primary flow path within the housing.
Various embodiments of the various aspects may be implemented. The cowling may form a nozzle. An axial distance from the primary inlet to an upper edge of the lower sidewall may be greater than or equal to an axial height of the annular secondary inlet. The air moving device may further comprise a plurality of longitudinal ribs extending within the secondary flow path to define a plurality of annular secondary inlets located between adjacent ribs.
In another aspect an air moving device comprises a housing and an impeller assembly. The housing has an upstream inlet, a downstream outlet, and defines a primary flow path extending through the housing from the inlet to the outlet. The housing further defines an annular secondary flow path extending from an annular opening of a sidewall of the housing to an annular downstream outlet of the secondary flow path that is adjacent the primary flow path within the housing. The impeller assembly is supported by the housing and configured to rotate a blade to cause air to enter the housing through the inlet, flow along the primary flow path, and exit the housing through the outlet.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings. In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the drawing, can be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and make part of this disclosure.
While the above-identified drawings set forth presently disclosed embodiments, other embodiments are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the presently disclosed embodiments.
The following detailed description is directed to certain specific embodiments of the development. In this description, reference is made to the drawings wherein like parts or steps may be designated with like numerals throughout for clarity. Reference in this specification to “one embodiment,” “an embodiment,” or “in some embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrases “one embodiment,” “an embodiment,” or “in some embodiments” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but may not be requirements for other embodiments. Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
An air moving device is described having a housing with a primary flow path and a secondary flow path that extends from a secondary inlet of the housing and empties into an inner outlet adjacent the primary flow path. An impeller assembly rotates a blade to cause air to enter the housing and flow along the primary flow path. The flow of air through the primary flow path creates a low pressure region at the inner outlet of the secondary flow path, causing air to flow through the secondary flow path and mix with the air in the primary flow path. The mixture of air flows through a downstream portion of the primary flow path having an expanded cross-sectional area compared to an upstream portion of the primary flow path and exits the housing. Stator vanes may extend longitudinally within the housing to cause columnar air flow. The device may be used for destratification of thermal gradients of air within an enclosure, such as a home or warehouse.
The housing 100 includes an upper portion 116. The upper portion 116 includes a radially inward extending annular upper lip 120. The upper lip 120 defines part of the primary inlet 110. The upper lip 120 may be smoothly rounded in a radial direction to allow for smooth airflow over the upper lip 120 and into the housing 100. The upper portion 116 includes an upper inner sidewall 122 extending downward from the upper lip 120 to a lower edge 123. The upper portion 116 includes an upper outer sidewall 118 extending downward from the upper lip 120. The upper outer sidewall 118 is located radially outward, relative to the axis, from the upper inner sidewall 122. The upper outer sidewall 18 extends downward to a lower outer edge 119. The upper portion 116 is cylindrical, but it may be other rounded shapes. The upper inner sidewall 122 may be contoured to define a nozzle. The upper inner sidewall 122 may thus extend axially downward from an upper first section having a first cross-sectional area to a lower second section having a second cross-sectional area that is less than the first cross-sectional area. In some embodiments, the air moving device 10, for example the housing 100, may include a grill 101 (see
The upper portion 116 may form a cowling as illustrated. The upper portion 116 may have a smoothly rounded upper lip 120 in a radial direction that smoothly extends to the upper inner sidewall 122. The upper inner sidewall 122 may be straight or smoothly curved. In some embodiments, the upper inner sidewall 122 may form a nozzle or nozzle-like shape, for example as illustrated the radial width of the lower edge 123 may be less than the radial width of the inlet 110. The upper inner sidewall 122 may have a constant or non-constant radial width along an axial direction. Further details of the width of the upper portion 116 are described herein, for example with respect to
The housing 100 includes a lower portion 128. The lower portion 128 includes a lower outer sidewall 132. The lower outer sidewall 132 extends downward from an upper edge 130 to a lower edge 134. As illustrated, the lower edge 134 may be located at and define the primary outlet 112. The lower outer sidewall 132 may have the same or different outer width, for example diameter, as the upper outer sidewall 118.
The air moving device 10 includes an annular secondary inlet 140. The annular secondary inlet 140 is defined by the upper portion 116 and the lower portion 128. The annular secondary inlet 140 is located between the lower outer edge 119 of the upper outer sidewall 118 of the upper portion 116 and the upper edge 130 of the lower outer sidewall 132 of the lower portion 128. The lower outer edge 119 of the upper outer sidewall 118 may thus be an upper edge of the opening of the annular secondary inlet 140, and the upper edge 130 of the lower outer sidewall 132 may be a lower edge of the opening of the annular secondary inlet 140. The annular secondary inlet 140 provides a bypass intake for air to enter the housing 100 in a different location from that of the primary inlet 110. The annular secondary inlet 140 provides an opening to a secondary flow path, as further described herein.
The annular secondary inlet 140 may be an opening defined by parallel upper and lower edges 130, 119 as shown, such that the opening extends circumferentially and generally forms a belt-like shape. In some embodiments the upper and/or lower edge 130, 119 defining the annular secondary inlet 140 may be straight, curved, segmented, other shapes, or combinations thereof. In some embodiments, the upper and/or lower edge 130, 119 may be, or include features that are, rounded radially to provide a smooth contour for air entering the annular secondary inlet 140.
The annular secondary inlet 140 extends continuously around the outer perimeter, for example circumference, of the housing 100. In some embodiments, the annular secondary inlet 140 may not extend continuously around the entire outer perimeter of the housing 100. For example, there may be multiple annular segments of the annular secondary inlet 140 separated by solid wall and/or other features therebetween, for example separated by portions of the upper outer sidewall 118 or the lower outer sidewall 132.
There may be one continuous annular secondary inlet 140 or separate segments of the annular secondary inlet 140 extending along the same or similar axial location of the housing 100. For instance, the inlet or inlets 140 may be aligned circumferentially about the housing 100. In some embodiments, there may be a second continuous annular secondary inlet, 140 or second separate segments of the annular secondary inlet 140, located axially above and/or below the annular secondary inlet 140. Further, the annular secondary inlet or inlets 140 may be entirely open as shown, or they may have screens or other porous structures over some or all of the openings of the annular secondary inlet or inlets 140. Therefore, the particular embodiment of the annular secondary inlet 140 shown and described herein is merely one example, and other configurations and features may be implemented that are within the scope of the disclosure.
The air moving device 10 includes a plurality of longitudinal ribs 136. The ribs 136 extend axially and radially between the upper and lower portions 116, 128. The ribs 136 may connect the upper portion 116 with the lower portion 128. The ribs 136 may be distributed angularly about the axis within the housing 100, as further described.
The air moving device 10 includes a handle 102. The handle 102 extends from a first side of the housing 100 to a second opposite side of the housing 100. The air moving device 10 may be hung from an enclosure, such as a ceiling in a building, using the handle 102. The handle 102 may be connected to the housing 100 at rotatable connections 104. The connections 104 may allow for angling the air moving device 10 about a perpendicular axis that is perpendicular to the longitudinal axis shown in
As shown in
The vanes 150 may be integral with the lower portion 128. In some embodiments, the vanes 150, the lower portion 128, and the upper portion 116 may be integral. In some embodiments, the vanes 150, the lower portion 128, the upper portion 116 and the ribs 136 may be integral. The various integral combinations of parts of the housing 100 may be injection molded, or formed using other suitable methods. In some embodiments, the various parts are made separately and attached together. In some embodiments, the upper portion 116 may be a cowling, which may be integral with one or more of the vanes 150, the lower portion 128, and the ribs 136, or the cowling may be removeably attached with one or more of the vanes 150, the lower portion 128, and the ribs 136.
The impeller assembly 200 may be supported by the housing 100. The motor 210 may be supported by upper portions of the vanes 150, such as radially inward portions of the upper edges 154 of the vanes 150. In some embodiments, the impeller assembly 200 may be supported by a support structure, such as a rib that connects the impeller assembly 200 with the upper portion 116 of the housing 100. The support structure may be located above or below the blades 220. Various suitable support structures may be implemented, for example as described in U.S. Patent Publication No. 2016/0146222, titled “Air Moving Device” and Published May 26, 2016, the entire content of which is incorporated herein by reference for all purposes and forms a part of this specification.
As shown in
The primary flow path 111 may extend from and between the upper lip 120 downward between the upper inner sidewall 122. The primary flow path 111 may continue downward between the lower outer sidewall 132. The primary flow path 111 may terminate at the outlet 112 of the housing 100, for example at the lower edge 134.
The primary flow path 111 includes an upper region 113 and a lower region 115. The upper region 113 is located within the upper portion 116 of the housing 100. The lower region 115 is located below the upper region 113, within at least part of the lower portion 128 of the housing 100. The upper region 113 may include a portion of the primary flow path 111 that is flowing through a part of the housing 100 having a first cross-sectional area. The lower region 115 may include a portion of the primary flow path 111 that is flowing through a part of the housing 100 having a second cross-sectional area that is greater than the first cross-sectional area. A width W1 of the housing 100 within the upper region 113 may be less than a width W2 of the housing within the lower region 115, as further described herein, for example with respect to
The secondary flow path 142 extends from the annular secondary inlet 140 to a secondary outlet 144. The secondary flow path 142 is indicated by the geometric arrow for reference. The secondary outlet 144 may have an annular shape as shown, or other shapes. The secondary outlet 144 may have features to facilitate air flow, such as rounded edges, etc.
The secondary flow path 142 may extend from and between the lower outer edge 119 of the upper outer sidewall 118 and the upper edge 130 of the lower outer sidewall 132. The secondary flow path 142 may continue downward between an inner surface of the lower outer sidewall 132 and an outer surface of the upper inner sidewall 122. The secondary flow path 142 may terminate between the lower edge 123 of the upper inner sidewall 122 and an inner surface of the lower outer sidewall 132. The air moving device 10 may include a pocket 141 located above the secondary flow path 142. The pocket 10 may be part of the secondary flow path 142. The pocket 141 may be hollow. In some embodiments, the pocket 141 may be partially hollow, may not be hollow, or there may not be a pocket 141.
The secondary outlet 144 is located adjacent the primary flow path 111. Thus air entering the secondary flow path 142 via the annular secondary inlet 140 flows through the secondary outlet 144 and mixes with air in the primary flow path 111. The air flowing along the primary flow path 111 adjacent to the secondary outlet 144 will cause a lower pressure at the secondary outlet 144 relative to the air pressure at the annular secondary inlet 140. For example, the ambient air adjacent the annular secondary inlet 140 may be static or not flowing as fast as the air in the primary flow path. The resulting differential pressures between the secondary outlet 144 and the annular secondary inlet 140 will cause air to flow along the secondary flow path 142 in the direction indicated and empty into the primary flow path 111, which may be at the lower region 115 of the primary flow path 115.
The air moving device 10 may include a mixing region 145, which is indicated in
As shown in
In some embodiments, the ribs 136 may not connect with or be integral with the respective vane 150. For example, the vanes 150 may be angularly aligned differently from the ribs 136, or there may not be any vanes 150. The lower edge 138 of the rib 136 may be located below the lower edge 123 of the upper inner sidewall 122. The lower edge 138 of the rib 136 may be located closer to the lower edge 123 of the upper inner sidewall 122 than to the lower edge 134 of the lower outer sidewall 132. The lower edge 138 of the rib 136 may be in other locations, for example above the lower edge 123 of the upper inner sidewall 122, or closer to the lower edge 134 of the lower outer sidewall 132 than to the lower edge 123 of the upper inner sidewall 122, etc. There are eight ribs 136, but there may be none, one, two, three, four, five, six, seven, nine, ten eleven, twelve, or more ribs 136.
As shown in
The vanes 150 have an upper edge 154. The upper edge 154 is located within the upper region 113 of the primary flow path 111. The upper edge 154 may be located at the same axial location as the upper edge 130 of the lower outer sidewall 132. In some embodiments, the upper edge 154 may located axially above or below this location. The upper edge 154 is on the upper end of the curved portion 158. The curved portion 158 curves perpendicularly to a radial direction of the housing 100. Each of the curved portions 158 curve in the same direction. In some embodiments, some or all of the vanes 150 may not include the curved portion 158.
The vanes 150 have the flat portion 152 extending axially downward from the curved portion 158 to the lower edge 156. The vanes 150 may be integral with, or otherwise couple with, a respective longitudinal rib 136. Thus, the vane 150 and respective rib 136 may form a continuous structure.
As further shown in
The widths W1, W2 may be constant axially along their respective locations. The widths W1, W2 may be diameters, where the respective sections are cylindrical. In some embodiments, the widths W1, W2 may change at different axial locations along their respective locations. In some embodiments, the width W1 may decrease from an upper portion of the upper inner sidewall 122 to a lower portion of the upper inner sidewall, for example where the upper inner sidewall 122 forms a nozzle or cowling. In such cases, the first width W1 may refer to the width of the outlet or lower end of the nozzle cowling, for example as measured between opposite radial locations of the lower edge 123 of the upper inner sidewall 122.
The width W2 is greater than the width W1. The width W2 may be greater than the width W1 by 3%, 5%, 7%, 10%, 15%, 20% or more. The increased second width W2 relative to the first width W1 creates a low pressure area at the secondary outlet 144. The expanded cross-sectional area due to the increased width W2 thus creates a low pressure zone that pulls in air through the secondary flow path 142. This induces mixing of the air flowing from the secondary flow path 142 and the air flowing along the primary flow path 111 near the secondary outlet 144.
In some embodiments, W1 is from 4 inches to 12 inches. W1 may be 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, 11 inches, 12 inches, or more. W1 may be at least 4 inches, at least 5 inches, at least 6 inches, at least 7 inches, at least 8 inches, at least 9 inches, at least 10 inches, at least 11 inches, or at least 12 inches. In some embodiments, W2 is from 5 inches to 13 inches. W2 may be 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, 11 inches, 12 inches, 13 inches, or more. W2 may be at least 4 inches, at least 5 inches, at least 6 inches, at least 7 inches, at least 8 inches, at least 9 inches, at least 10 inches, at least 11 inches, at least 12 inches, or at least 13 inches. W2 may be 1 inch or about 1 inch greater than W1. In some embodiments, W2 may be 0.5 inches greater than W1, 0.75 inches, 1.25 inches greater than W1, 1.5 inches greater than W1, 1.75 inches greater than W1, or 2 inches greater than W1.
As further shown in
As further shown in
As further shown in
The various dimensions of the device 10 may be sized or designed to achieve desired air flow performance goals. In some embodiments, D2 and D5 may be related. For example, D2 may be, or be about, 0.8×D5 (i.e., 0.8 multiplied by D5). In some embodiments, D2 may be greater than or equal to 0.6×D5, 0.7×D5, 0.8×D5, 0.9×D5, 1.0×D5, 1.1×D5, 1.2×D5, 1.3×D5, 1.4×D5, or 1.5×D5.
In some embodiments, the area of the outer opening(s) or space(s) defined by the secondary inlet 140 along the outside of the device 10 may be related to the cross-sectional area of the secondary flow path 142 located between the lower outer sidewall 132 and the upper inner sidewall 122. The area of the secondary inlet 140 may be approximated by the product of D2 and the circumference of the upper edge 130. The cross-sectional area of the secondary flow path 142 may be measured perpendicularly to the axis of the device 10 and may be approximated by the product of D5 and either W1 or W2. In some embodiments, the cross-sectional area of the secondary inlet 140 may be greater than or equal to 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5 multiplied by the cross-sectional area of the secondary flow path 142. The cross-sectional area of the secondary inlet 140 and the cross-sectional area of the secondary flow path 142 may be about the same. For purposes of this application, unless otherwise stated, these relationships are based on cross-sectional areas which do not include any area obstructed by features within the opening of the secondary inlet 140 or within secondary flow path 142, such as the ribs 136, screws, etc. Thus, any area actually taken up by a rib by default is not considered part of the cross-sectional area. On the other hand, if specifically so stated, these relationships may be based on a cross-sectional area which includes any area(s) obstructed by features within the opening of the secondary inlet 140 or within secondary flow path 142, such as the ribs 136, screws, etc. In particular, the relationships discussed above could be used regardless of whether an area obstructed by features is included in the calculation of the cross-sectional area.
Such relations between D1 and D5, or between the area of the secondary inlet 140 and the cross-sectional area of the secondary flow path 142, may result in greater thrust being produced by the device 10, allowing for less energy usage and related savings in cost of using the device 10, and other benefits as described herein. Such relations may allow for 5% or more, 7% or more, 10% or more, 15% or more, or 20% or more thrust as compared to an air moving device that did not have the bypass intake features described herein, such as the secondary flow path 142.
In some embodiments, D1, D2 and D3 may be related. In some embodiments, the secondary inlet 140 may not extend axially below the lower edge 123 of the upper inner sidewall. For example, D3 may be greater than or equal to the sum of D1 and D2, i.e. D3≥D1+D2. In some embodiments, D3×0.9≥D1+D2, D3×0.8≥D1+D2, D3×0.7≥D1+D2, D3×0.6≥D1+D2. In some embodiments, the secondary inlet 140 may axially extend below or slightly below the lower edge 123. For example, in some embodiments, D3×1.1≥D1+D2, D3×1.2≥D1+D2, D3×1.3≥D1+D2, or D3×1.4≥D1+D2. In some embodiments, D1, D2 and/or D3 may be sized such that the mixing region 145 (see
The mixing of air from the primary and secondary flow paths 111, 142 creates more thrust for a given power input. In other words, less power is needed to achieve a given thrust. The low pressure zone pulls in the ambient air through the annular secondary inlet 140 and through the secondary flow path 142 into the primary flow path 111. This in effect creates another source of thrust for the air flowing through the housing 100. The air flowing from the secondary flow path 142 thus has a velocity with an axial component in the direction of the air flowing in the primary flow path 111. The axial component if the secondary air is additive with the already flowing primary air flow to create more thrust for a given rotational speed of the impeller assembly 200.
The housing 100 may have an overall axial height H. The height H may be measured axially from the upper lip 120 to the lower edge 134 of the housing 100. The height H may be greater than the second width W2. The height H may be greater than the second width W by 5%, 10%, 15%, 20%, 25% or more. In some embodiments, the height H be the same as or less than the second width W2. The height H may be designed to provide a desired “throw” or length of column of air emitted from the device 10. The height H may be increased to provide for a longer throw. The height H may be decreased for a shorter throw. The height H may be designed to control the lateral dispersion of the air emitted from the device 10. The height H may be decreased to provide more lateral dispersion of the air omitted from the device 10, for example to have a wider column of air emitted and/or to emit a conical-shaped stream of air from the device 10.
The annular secondary inlet 140 may extend an axial height of distance D2. The distance D2 may be measured from the lower outer edge 119 of the upper outer sidewall 118 axially to the upper edge 130 of the lower outer sidewall 132. The distance D2 may be constant circumferentially along the annular secondary inlet 140. In some embodiments, the distance D2 may not be constant circumferentially along the annular secondary inlet 140.
The distance D1 is greater than the distance D2. The distance D2 may be equal to the distance D1. In some embodiments, the distance D1 is greater than the distance D2 by 5%, 10%, 15%, 20%, 25% or more. In some embodiments, the distance D1 is at least 1.0, 1.1, 1.2, 1.3, 1.4, or 1.5 times the distance D2. In some embodiments, the distance D1 is at least 0.6, 0.7, 0.8, 0.9, or 1.0 times the distance D2. Thus, in some embodiments, the distance D2 may be greater than the distance D1. In some embodiments, there may be multiple annular secondary inlets 140 extending circumferentially, for example parallel, to each other, and each of the multiple annular secondary inlets 140 may have the axial distance D2 as described herein. D2 is 1.25 inches. In some embodiments, may be 0.25 inches, 0.375 inches, 0.5 inches, 0.625 inches, 0.75 inches, 0.875 inches, 1 inch, 1.125 inches, 1.25 inches, 1.375 inches, 1.5 inches, 1.625 inches, 1.75 inches, 1.875 inches, 2 inches, 2.25 inches, 2.5 inches, 3 inches, or about any of the foregoing lengths. In some embodiments, D2 may be less than D1.
The device 11 includes the housing 100 including the lower portion 128 and the upper portion 116 with an annular secondary inlet 140. The primary inlet 110 is formed by the lip 120 and an upper region of the upper inner sidewall 122. The impeller assembly 200 rotates the impeller blades 220 to draw air through the primary inlet 110 along the primary flow path 111 and out the primary outlet 112. Air is drawn into the secondary inlet 140 along a secondary flow path 142 and mixes with the air flowing inside the housing 100 and exits the primary outlet 112.
The air moving device 11 also includes the grill 101. As shown, the embodiment of the grill 101 on the device 11 includes upper grill members 103 extending along a top surface of the grill 101 in an annular direction. The grill 101 also includes side grill members 105 extending along a side surface of the grill 101 in an annular direction. The members 103, 105 are spaced to allow air to be drawn into the primary inlet 110 and into the housing 100 by the impeller 200 rotating the blades 220.
The impeller 200 is desirably positioned and retained in place by supports 107. There may be eight supports 107 as shown, or fewer or greater than eight supports 107. The supports 107 may be part of the grill 101. In some embodiments, there may not be a grill 101 but only the supports 107 supporting the impeller 200. As shown, the grill 101 is attached to the supports 107 to support the impeller 200 and the grill members 103, 105 at a top region of the device 11. The impeller 200 extends axially downward from the supports 107 into the housing 100 such that the rotating blades 220 are located under the grill 101 and provide protection from injury to a user. The impeller 200 may be supported by a mount connecting the impeller 200 to the grill 100. Outer ends of the supports 107 connect to the housing 100, as shown to outer regions of the annular upper lip 120. Attachments 109 are located at an upper region of the device 11. As shown, the attachments 109 may be located on or near top outer ends of one or more of the supports 107. The attachments 109 may be eye hooks as shown, or other suitable mechanical features, for example for hanging the device 11 from a ceiling.
The device 11 further includes outer connecting ribs 131. The ribs 131 connect the upper portion 116 of the housing 100 to the lower portion 128 of the housing 100. As shown, the ribs 131 connect the upper outer sidewall 118 to the lower outer sidewall 132. The ribs 131 also define circumferential ends of the secondary annular inlets 140. The ribs 131 may be continuations of the upper portion and/or lower portion 128. The ribs 131 may be regions of the same continuous housing 100 structure.
The device 11 includes a plurality of the secondary annular inlets 140. The inlets 140 are separated by the ribs 131. There are eight inlets 140. There may be one, two, three, four, five, six, seven, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, or more inlets 140. The inlets 140 may form windows leading to the secondary flow path 142. The outer connecting ribs 131 may be angularly aligned with the inner ribs 130. There may be one or more inner ribs 130 located radially inward of each outer connecting rib 131. In some embodiments, the inner and outer ribs 130, 131 may be one continuous structure. The inner rib 130 may have a thickness in the circumferential direction that is much smaller than the circumferential length of the outer rib 131, or these two dimensions may be the same or similar.
Importantly, the air moving device 11 may have a configuration as discussed above in connection with the air moving device 10. For example, the air moving device 11 may have a height H and an upper portion of the annular secondary inlet 140 may be located an axial distance D1 from the inlet 110. Similarly, the annular secondary inlet 140 may extend an axial height of distance D2. The distance D1 may be less than 50% of the height H. In some embodiments, the distance D1 may be less than 50%, 40%, 30%, 20%, 10% or less of the height H. The distance D2 may be greater than the distance D1. The distance D2 may be equal to the distance D1. In some embodiments, the distance D2 is greater than the distance D1 by 5%, 10%, 15%, 20%, 25% or more.
The air moving devices described herein, such as the devices 10 and 11, may be implemented with a variety of features and configurations that are still within the scope of this disclosure. For example, the housing 100, such as the upper and/or lower portions 116, 128 and/or other features of the housing 100, the impeller assembly 200, the ribs 136, and/or the vanes 150, may have other suitable shapes, configurations, features, etc., as shown and described in U.S. Pat. No. 7,381,129, titled “Columnar Air Moving Devices, Systems and Methods” and issued Jun. 3, 2008, in U.S. Pat. No. 9,631,627, titled “Columnar Air Moving Devices, Systems and Methods” and issued Apr. 25, 2017, in U.S. Pat. No. 8,616,842, titled “Columnar Air Moving Devices, Systems and Methods” and issued Dec. 31, 2013, in U.S. Pat. No. 10,221,861, titled “Columnar Air Moving Devices, Systems and Methods” and issued Mar. 5, 2019, in U.S. Pat. No. 9,151,295, titled “Columnar Air Moving Devices, Systems and Methods” and issued Oct. 6, 2015, in U.S. Pat. No. 9,459,020, titled “Columnar Air Moving Devices, Systems and Methods” and issued Oct. 4, 2016, in U.S. Pat. No. 9,335,061, titled “Columnar Air Moving Devices, Systems and Methods” and issued May 10, 2016, in U.S. Pat. No. 9,702,576, titled “Columnar Air Moving Devices, Systems and Methods” and issued Jul. 11, 2017, in U.S. Pat. No. 10,024,531, titled “Columnar Air Moving Devices, Systems and Methods” and issued Jul. 17, 2018, in U.S. Patent Publication No. 2016/0146222, titled “Air Moving Device” and Published May 26, 2016, and/or in U.S. Patent Publication No. 2017/0370363, titled “Air Moving Device” and Published Dec. 28, 2017, the entire content of each of which is incorporated herein by reference for all purposes and forms a part of this specification.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein can be applied to other implementations without departing from the spirit or scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the claims, the principles and the novel features disclosed herein. The word “example” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “example” is not necessarily to be construed as preferred or advantageous over other implementations, unless otherwise stated.
Certain features that are described in this specification in the context of separate implementations also can be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation also can be implemented in multiple implementations separately or in any suitable sub-combination. Moreover, although features can be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination can be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Additionally, other implementations are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results.
It will be understood by those within the art that, in general, terms used herein are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to embodiments containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. For example, this application is a continuation of U.S. patent application Ser. No. 16/849,768, filed Apr. 15, 2020, now U.S. Pat. No. 11,598,539, and titled “Air Moving Device With Bypass Intake,” which claims the benefit of priority to U.S. Provisional Application No. 62/835,314 filed Apr. 17, 2019, and titled “Air Moving Device With Bypass Intake,” and to U.S. Provisional Application No. 62/876,514 filed Jul. 19, 2019, and titled “Air Moving Device With Bypass Intake,” the entirety of each of which is incorporated herein by reference for all purposes and forms a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
651637 | Nicol | Jun 1900 | A |
D33522 | Brinkerhoff | Nov 1900 | S |
818604 | Bierd | Apr 1906 | A |
866292 | Meston | Sep 1907 | A |
917206 | Watts | Apr 1909 | A |
1858067 | Warren | May 1932 | A |
1877347 | McCurdie | Sep 1932 | A |
1926795 | Sassenberg | Sep 1933 | A |
2016778 | Hall et al. | Oct 1935 | A |
2142307 | De Mey et al. | Jan 1939 | A |
2144035 | Smith, Jr. | Jan 1939 | A |
2154313 | McMahan | Apr 1939 | A |
2189008 | Kurth | Feb 1940 | A |
2189502 | Johnston | Feb 1940 | A |
2232573 | Teves | Feb 1941 | A |
2258731 | Blumenthal | Oct 1941 | A |
D133120 | Spear | Jul 1942 | S |
2300574 | Jepertinger | Nov 1942 | A |
2359021 | Campbell et al. | Sep 1944 | A |
2366773 | Eklund et al. | Jan 1945 | A |
2371821 | Havis | Mar 1945 | A |
D152397 | Damond | Jan 1949 | S |
2513463 | Eklund et al. | Jul 1950 | A |
2524974 | Hickmott | Oct 1950 | A |
2615620 | Goettl | Oct 1952 | A |
2632375 | Stair et al. | Mar 1953 | A |
2658719 | Johanson | Nov 1953 | A |
D174230 | Lewis, II | Mar 1955 | S |
2710337 | Moore, Jr. | Jun 1955 | A |
2814433 | Brinen | Nov 1957 | A |
2830523 | Vehige | Apr 1958 | A |
D187699 | van Rijn | Apr 1960 | S |
2982198 | Mohrman | May 1961 | A |
3012494 | Drummond | Dec 1961 | A |
3036509 | Babbitt | May 1962 | A |
3040993 | Schultz | Jun 1962 | A |
3068341 | Ortiz et al. | Dec 1962 | A |
3072321 | King, Jr. | Jan 1963 | A |
D195287 | Downing | May 1963 | S |
3099949 | Davidson | Aug 1963 | A |
3165294 | Anderson | Jan 1965 | A |
3188007 | Myklebust | Jun 1965 | A |
3212425 | Lindner et al. | Oct 1965 | A |
3246699 | Jocz | Apr 1966 | A |
3300123 | Freyholdt et al. | Jan 1967 | A |
3306179 | Lambie et al. | Feb 1967 | A |
3320869 | Schach | May 1967 | A |
3364839 | Sweeney et al. | Jan 1968 | A |
3382791 | Henry-Biabaud | May 1968 | A |
3386368 | Fielding | Jun 1968 | A |
3413905 | Johnson | Dec 1968 | A |
3524399 | Bohanon | Aug 1970 | A |
3584968 | Keith | Jun 1971 | A |
3601184 | Hauville | Aug 1971 | A |
3690244 | Kallel et al. | Sep 1972 | A |
3699872 | Kruger | Oct 1972 | A |
3765317 | Lowe | Oct 1973 | A |
3785271 | Joy | Jan 1974 | A |
3827342 | Hughes | Aug 1974 | A |
D232831 | Vidmar, Jr. | Sep 1974 | S |
3835759 | LLoyd | Sep 1974 | A |
D234847 | Hoffman | Apr 1975 | S |
3876331 | DenHerder et al. | Apr 1975 | A |
3927300 | Wada et al. | Dec 1975 | A |
3932054 | McKelvey | Jan 1976 | A |
3934494 | Butler | Jan 1976 | A |
3967927 | Patterson | Jul 1976 | A |
3973479 | Whiteley | Aug 1976 | A |
3988973 | Honmann | Nov 1976 | A |
4006673 | Meyer et al. | Feb 1977 | A |
D246467 | Kurata | Nov 1977 | S |
4064427 | Hansen et al. | Dec 1977 | A |
4123197 | Keem et al. | Oct 1978 | A |
D251851 | Palm | May 1979 | S |
4152973 | Peterson | May 1979 | A |
4162779 | Van Steenhoven et al. | Jul 1979 | A |
4185545 | Rusth et al. | Jan 1980 | A |
D255488 | Kanarek | Jun 1980 | S |
4210833 | Neveux | Jul 1980 | A |
D256273 | Townsend et al. | Aug 1980 | S |
4234916 | Goralnik | Nov 1980 | A |
D258010 | Bowls et al. | Jan 1981 | S |
D258526 | Nederman | Mar 1981 | S |
4261255 | Anderson et al. | Apr 1981 | A |
4321659 | Wheeler | Mar 1982 | A |
4344112 | Brown | Aug 1982 | A |
D269638 | Frye, Jr. et al. | Jul 1983 | S |
4391570 | Stutzman | Jul 1983 | A |
4396352 | Pearce | Aug 1983 | A |
D272184 | Karpowicz | Jan 1984 | S |
D273793 | Nachatelo | May 1984 | S |
D274772 | Obland | Jul 1984 | S |
4473000 | Perkins | Sep 1984 | A |
4512242 | Bohanon, Sr. | Apr 1985 | A |
4515538 | Shih | May 1985 | A |
4522255 | Baker | Jun 1985 | A |
4524679 | Lyons | Jun 1985 | A |
4546420 | Wheeler et al. | Oct 1985 | A |
4548548 | Gray, III | Oct 1985 | A |
4550649 | Zambolin | Nov 1985 | A |
D283054 | Altman | Mar 1986 | S |
4630182 | Moroi et al. | Dec 1986 | A |
4657483 | Bede | Apr 1987 | A |
4657485 | Hartwig | Apr 1987 | A |
4662912 | Perkins | May 1987 | A |
4678410 | Kullen | Jul 1987 | A |
4681024 | Ivey | Jul 1987 | A |
D291488 | Delmas | Aug 1987 | S |
4692091 | Ritenour | Sep 1987 | A |
D293029 | Shwisha | Dec 1987 | S |
4714230 | Huang | Dec 1987 | A |
4715784 | Mosiewicz | Dec 1987 | A |
4716818 | Brown | Jan 1988 | A |
4730551 | Peludat | Mar 1988 | A |
4750863 | Scoggins | Jun 1988 | A |
4790863 | Nobiraki et al. | Dec 1988 | A |
4794851 | Kurrle | Jan 1989 | A |
4796343 | Wing | Jan 1989 | A |
4848669 | George | Jul 1989 | A |
4850265 | Raisanen | Jul 1989 | A |
4890547 | Wagner et al. | Jan 1990 | A |
4895065 | Lamparter | Jan 1990 | A |
D308416 | Brumbach | Jun 1990 | S |
4930987 | Stahl | Jun 1990 | A |
4971143 | Hogan | Nov 1990 | A |
4973016 | Hertenstein | Nov 1990 | A |
D312875 | Spock | Dec 1990 | S |
D314619 | Beavers et al. | Feb 1991 | S |
5000081 | Gilmer | Mar 1991 | A |
5021932 | Ivey | Jun 1991 | A |
5033711 | Gregorich et al. | Jul 1991 | A |
5042366 | Panetski et al. | Aug 1991 | A |
5060901 | Lathrop et al. | Oct 1991 | A |
5078574 | Olsen | Jan 1992 | A |
5094676 | Karbacher | Mar 1992 | A |
D325628 | Cho | Apr 1992 | S |
5107755 | Leban et al. | Apr 1992 | A |
5121675 | Muller et al. | Jun 1992 | A |
5127876 | Howe et al. | Jul 1992 | A |
D328405 | Heiligenstein et al. | Aug 1992 | S |
5152606 | Borraccia et al. | Oct 1992 | A |
5156568 | Ricci | Oct 1992 | A |
5191618 | Hisey | Mar 1993 | A |
D335532 | Lopez | May 1993 | S |
D337157 | Ortiz | Jul 1993 | S |
D340765 | Joss et al. | Oct 1993 | S |
5251461 | Fallows, III et al. | Oct 1993 | A |
D347467 | Medvick | May 1994 | S |
5328152 | Castle | Jul 1994 | A |
5358443 | Mitchell et al. | Oct 1994 | A |
5399119 | Birk et al. | Mar 1995 | A |
5423660 | Sortor | Jun 1995 | A |
5429481 | Liu | Jul 1995 | A |
5439349 | Kupferberg | Aug 1995 | A |
5439352 | Line | Aug 1995 | A |
5443625 | Schaffhausen | Aug 1995 | A |
5458505 | Prager | Oct 1995 | A |
5462484 | Jung et al. | Oct 1995 | A |
5466120 | Takeuchi et al. | Nov 1995 | A |
5484076 | Petrushka | Jan 1996 | A |
5511942 | Meier | Apr 1996 | A |
5513953 | Hansen | May 1996 | A |
5520515 | Bailey et al. | May 1996 | A |
5545241 | Vanderauwera et al. | Aug 1996 | A |
5547343 | Janéet al. | Aug 1996 | A |
5551841 | Kamada | Sep 1996 | A |
5561952 | Damron | Oct 1996 | A |
5569019 | Katariya et al. | Oct 1996 | A |
5584656 | Rose | Dec 1996 | A |
5595068 | Amr | Jan 1997 | A |
5613833 | Wolfe et al. | Mar 1997 | A |
5658196 | Swaim | Aug 1997 | A |
5664872 | Spearman et al. | Sep 1997 | A |
D386267 | Tickner | Nov 1997 | S |
5709458 | Metz | Jan 1998 | A |
5725190 | Cuthbertson et al. | Mar 1998 | A |
5725356 | Carter | Mar 1998 | A |
5782438 | Hubben et al. | Jul 1998 | A |
5791985 | Schiedegger et al. | Aug 1998 | A |
5822186 | Bull | Oct 1998 | A |
D404617 | Mick et al. | Jan 1999 | S |
D407696 | Shimazu | Apr 1999 | S |
5918972 | Van Belle | Jul 1999 | A |
5934783 | Yoshikawa | Aug 1999 | A |
5938527 | Oshima et al. | Aug 1999 | A |
D414550 | Bloom | Sep 1999 | S |
5947816 | Schiedegger et al. | Sep 1999 | A |
5967891 | Riley et al. | Oct 1999 | A |
5975853 | Lackey | Nov 1999 | A |
5984252 | Bograng et al. | Nov 1999 | A |
5997253 | Fechan | Dec 1999 | A |
6004097 | Wark et al. | Dec 1999 | A |
6068385 | Hsieh | May 2000 | A |
D427673 | Stout, Jr. | Jul 2000 | S |
6095671 | Hutain | Aug 2000 | A |
6109874 | Steiner | Aug 2000 | A |
6145798 | Janisse et al. | Nov 2000 | A |
6149513 | Lyu | Nov 2000 | A |
6155782 | Hsu | Dec 2000 | A |
6168517 | Cook | Jan 2001 | B1 |
6176680 | Ringblom et al. | Jan 2001 | B1 |
6183203 | Grintz | Feb 2001 | B1 |
6192702 | Shimogori | Feb 2001 | B1 |
6193384 | Stein | Feb 2001 | B1 |
6196915 | Schiedegger et al. | Mar 2001 | B1 |
D443053 | Schaefer | May 2001 | S |
6319304 | Moredock | Nov 2001 | B1 |
D453960 | Shelby et al. | Feb 2002 | S |
6352473 | Clark | Mar 2002 | B1 |
6357714 | Johnson | Mar 2002 | B1 |
6360816 | Wagner | Mar 2002 | B1 |
6361428 | Tosconi et al. | Mar 2002 | B1 |
6361431 | Kawano | Mar 2002 | B1 |
6364760 | Rooney | Apr 2002 | B1 |
D457142 | Chang | May 2002 | S |
D457452 | Christiansen | May 2002 | S |
D457613 | Schaefer | May 2002 | S |
6382911 | Beltowski | May 2002 | B1 |
6383072 | Schiedegger et al. | May 2002 | B2 |
6384494 | Avidano et al. | May 2002 | B1 |
6386828 | Davis et al. | May 2002 | B1 |
6386970 | Vernier, II et al. | May 2002 | B1 |
6386972 | Schiedegger et al. | May 2002 | B1 |
6435964 | Chang | Aug 2002 | B1 |
6451080 | Rocklitz et al. | Sep 2002 | B1 |
6458028 | Snyder | Oct 2002 | B2 |
6458628 | Distefano et al. | Oct 2002 | B1 |
6484524 | Ulanov | Nov 2002 | B1 |
D470066 | Christiansen | Feb 2003 | S |
D470731 | Hipgrave et al. | Feb 2003 | S |
6551185 | Miyake et al. | Apr 2003 | B1 |
6575011 | Busby et al. | Jun 2003 | B1 |
6581974 | Ragner et al. | Jun 2003 | B1 |
6582291 | Clark | Jun 2003 | B2 |
6592328 | Cahill | Jul 2003 | B1 |
6595747 | Bos | Jul 2003 | B2 |
D480132 | Stout, Jr. | Sep 2003 | S |
6626003 | Kortüm et al. | Sep 2003 | B1 |
6626636 | Bohn | Sep 2003 | B2 |
D481101 | Boehrs et al. | Oct 2003 | S |
D481127 | Hayamizu | Oct 2003 | S |
D481159 | Walker | Oct 2003 | S |
6648752 | Vernier, II et al. | Nov 2003 | B2 |
6679433 | Gordon et al. | Jan 2004 | B2 |
6682308 | Fei et al. | Jan 2004 | B1 |
6700266 | Winkel et al. | Mar 2004 | B2 |
D489967 | Funk | May 2004 | S |
6761531 | Toye | Jul 2004 | B2 |
6767281 | McKee | Jul 2004 | B2 |
6783578 | Tillman, Jr. | Aug 2004 | B2 |
6804627 | Marokhovsky et al. | Oct 2004 | B1 |
6805627 | Marts et al. | Oct 2004 | B2 |
6812849 | Ancel | Nov 2004 | B1 |
D500773 | Colson et al. | Jan 2005 | S |
D505627 | Py et al. | May 2005 | S |
6886270 | Gilmer | May 2005 | B2 |
6916240 | Morton | Jul 2005 | B1 |
6938631 | Gridley | Sep 2005 | B2 |
6941698 | Telles | Sep 2005 | B2 |
6951081 | Bonshor | Oct 2005 | B2 |
6966830 | Hurlstone et al. | Nov 2005 | B2 |
6974381 | Walker et al. | Dec 2005 | B1 |
D514688 | Avedon | Feb 2006 | S |
7011500 | Matson | Mar 2006 | B2 |
7011578 | Core | Mar 2006 | B1 |
7044849 | Dippel | May 2006 | B2 |
7048499 | Mathson et al. | May 2006 | B2 |
7056092 | Stahl | Jun 2006 | B2 |
7056368 | Moredock et al. | Jun 2006 | B2 |
D525725 | Foo | Jul 2006 | S |
7101064 | Ancel | Sep 2006 | B2 |
D532229 | Hoernig et al. | Nov 2006 | S |
7152425 | Han et al. | Dec 2006 | B2 |
7166023 | Haigh et al. | Jan 2007 | B2 |
7175309 | Craw et al. | Feb 2007 | B2 |
7185504 | Kasai et al. | Mar 2007 | B2 |
7201110 | Pawlak | Apr 2007 | B1 |
7201650 | Demerath et al. | Apr 2007 | B2 |
7214035 | Bussieres et al. | May 2007 | B2 |
7246997 | Liu et al. | Jul 2007 | B2 |
D552485 | Grabiner et al. | Oct 2007 | S |
7287738 | Pitlor | Oct 2007 | B2 |
7288023 | Leopold | Oct 2007 | B2 |
D557791 | Cox | Dec 2007 | S |
7311492 | Östberg | Dec 2007 | B2 |
7320636 | Seliger et al. | Jan 2008 | B2 |
7331764 | Reynolds et al. | Feb 2008 | B1 |
D564120 | Layne et al. | Mar 2008 | S |
D567930 | Smith | Apr 2008 | S |
D567961 | Yajima | Apr 2008 | S |
7374408 | Savage et al. | May 2008 | B2 |
D570981 | McClelland | Jun 2008 | S |
7381129 | Avedon | Jun 2008 | B2 |
D578390 | Green | Oct 2008 | S |
D582502 | Brittingham | Dec 2008 | S |
D583451 | Aloe et al. | Dec 2008 | S |
D583452 | Aloe et al. | Dec 2008 | S |
7467931 | O'Toole | Dec 2008 | B2 |
D584786 | Brittingham | Jan 2009 | S |
7473074 | Herbst et al. | Jan 2009 | B2 |
7476079 | Bartlett | Jan 2009 | B2 |
7484863 | Aubrey | Feb 2009 | B1 |
7497773 | Schmidt | Mar 2009 | B1 |
D591382 | Brittingham | Apr 2009 | S |
7516578 | Bonshor | Apr 2009 | B2 |
7544124 | Polston | Jun 2009 | B2 |
7549258 | Lajewski | Jun 2009 | B2 |
7566034 | Bonshor | Jul 2009 | B2 |
D599471 | Borovicka et al. | Sep 2009 | S |
D600396 | Luinstra | Sep 2009 | S |
7607935 | Dahl | Oct 2009 | B2 |
D604880 | Lovegrove | Nov 2009 | S |
7610717 | Lüken et al. | Nov 2009 | B2 |
7610726 | Lajewski | Nov 2009 | B2 |
D605332 | Miranda | Dec 2009 | S |
7645188 | Peerbolt | Jan 2010 | B1 |
7651390 | Profeta et al. | Jan 2010 | B1 |
D612925 | Kameyama et al. | Mar 2010 | S |
7677770 | Mazzochette | Mar 2010 | B2 |
7677964 | Bucher et al. | Mar 2010 | B1 |
7708625 | Leseman et al. | May 2010 | B2 |
7717674 | Tsuji et al. | May 2010 | B2 |
D617890 | Thomas | Jun 2010 | S |
D620096 | Underwood | Jul 2010 | S |
7748954 | Eguchi et al. | Jul 2010 | B2 |
7752814 | Bonshor | Jul 2010 | B2 |
D621985 | Sanoner | Aug 2010 | S |
D622895 | Lyons | Aug 2010 | S |
7774999 | McKee | Aug 2010 | B2 |
7780510 | Polston | Aug 2010 | B2 |
7785064 | Bartholmey et al. | Aug 2010 | B2 |
D625855 | Franklin | Oct 2010 | S |
D625856 | Franklin | Oct 2010 | S |
7849644 | Melesky | Dec 2010 | B2 |
D630337 | Chia et al. | Jan 2011 | S |
D630536 | Pettit | Jan 2011 | S |
D631142 | Angell | Jan 2011 | S |
D631148 | Benton et al. | Jan 2011 | S |
D631579 | Franklin | Jan 2011 | S |
D631580 | Franklin | Jan 2011 | S |
D631581 | Franklin | Jan 2011 | S |
7901278 | O'Hagin | Mar 2011 | B2 |
7930858 | Lajewski | Apr 2011 | B2 |
7942627 | Jin | May 2011 | B2 |
D645550 | Ferroni | Sep 2011 | S |
D645561 | Herrmann et al. | Sep 2011 | S |
D645593 | Janssen | Sep 2011 | S |
8052386 | Fitzpatrick et al. | Nov 2011 | B1 |
D651709 | Zeyfang | Jan 2012 | S |
D651919 | Lai et al. | Jan 2012 | S |
D651920 | Lai et al. | Jan 2012 | S |
D661902 | Italiano | Jun 2012 | S |
8215789 | Howard | Jul 2012 | B2 |
8282138 | Steiner | Oct 2012 | B2 |
8297945 | Spaggiari | Oct 2012 | B2 |
D672863 | Romero Carreras | Dec 2012 | S |
D676877 | Drenth et al. | Feb 2013 | S |
1053025 | Goodwin | Feb 2013 | A1 |
8366387 | Reuter | Feb 2013 | B2 |
D678791 | Ford | Mar 2013 | S |
D681184 | Romero Carreras | Apr 2013 | S |
D684307 | Teller | Jun 2013 | S |
8459846 | Tsao | Jun 2013 | B2 |
8487517 | Fang et al. | Jul 2013 | B2 |
8529324 | Moredock et al. | Sep 2013 | B2 |
8535128 | Chwala | Sep 2013 | B2 |
8596596 | Naji et al. | Dec 2013 | B2 |
8616842 | Avedon | Dec 2013 | B2 |
D698916 | Avedon | Feb 2014 | S |
8641375 | Tian et al. | Feb 2014 | B2 |
D702887 | Peiruccelli | Apr 2014 | S |
D703302 | Ruck | Apr 2014 | S |
D703579 | Kuster et al. | Apr 2014 | S |
D709643 | Kohler et al. | Jul 2014 | S |
D710485 | Nudo | Aug 2014 | S |
D710490 | Shurtleff | Aug 2014 | S |
D711843 | Yamazaki et al. | Aug 2014 | S |
D714996 | Trotter et al. | Oct 2014 | S |
D715904 | Tate et al. | Oct 2014 | S |
8894354 | Hodgson et al. | Nov 2014 | B2 |
8899930 | Innocenti et al. | Dec 2014 | B2 |
D721645 | Brown | Jan 2015 | S |
8931936 | Tham et al. | Jan 2015 | B1 |
D722486 | Wang | Feb 2015 | S |
D724199 | Bambot et al. | Mar 2015 | S |
D725053 | Kaneko et al. | Mar 2015 | S |
D725055 | Yamazaki et al. | Mar 2015 | S |
8967983 | Kampf | Mar 2015 | B2 |
8992174 | Chang | Mar 2015 | B2 |
D730185 | Blanco et al. | May 2015 | S |
9028085 | Todd, Jr. | May 2015 | B2 |
9028211 | Todd, Jr. | May 2015 | B2 |
D731030 | Tyler | Jun 2015 | S |
D733555 | Brady et al. | Jul 2015 | S |
D739223 | Paik et al. | Sep 2015 | S |
D739515 | Johnson et al. | Sep 2015 | S |
D739832 | Yamazaki et al. | Sep 2015 | S |
D740973 | Gonzalez | Oct 2015 | S |
9151295 | Avedon | Oct 2015 | B2 |
D742508 | Row et al. | Nov 2015 | S |
D742563 | Kasha | Nov 2015 | S |
D743521 | Jackson | Nov 2015 | S |
D746416 | Barlar | Dec 2015 | S |
D746971 | Avedon | Jan 2016 | S |
D747453 | Stewart et al. | Jan 2016 | S |
D752339 | Hoover | Mar 2016 | S |
D753817 | Maguire et al. | Apr 2016 | S |
D753818 | Maguire et al. | Apr 2016 | S |
D754312 | Ellis | Apr 2016 | S |
D755438 | Kimmet | May 2016 | S |
D756494 | Gledhill et al. | May 2016 | S |
D756498 | Norman et al. | May 2016 | S |
9335061 | Avedon | May 2016 | B2 |
D758642 | Eguchi | Jun 2016 | S |
D760384 | Niunoya et al. | Jun 2016 | S |
D761419 | Fitzgerald et al. | Jul 2016 | S |
D766098 | Seo | Sep 2016 | S |
D766100 | Jung | Sep 2016 | S |
D768844 | Koseoglu | Oct 2016 | S |
9459020 | Avedon | Oct 2016 | B2 |
D772531 | Troia | Nov 2016 | S |
D774689 | Terumichi | Dec 2016 | S |
D775719 | Smith et al. | Jan 2017 | S |
D777311 | Chen | Jan 2017 | S |
D783795 | Avedon | Apr 2017 | S |
9631627 | Avedon | Apr 2017 | B2 |
D788886 | Salzer | Jun 2017 | S |
D788953 | Khan | Jun 2017 | S |
9696026 | Hardgrave | Jul 2017 | B1 |
9702576 | Avedon | Jul 2017 | B2 |
9714663 | Avedon | Jul 2017 | B1 |
D794198 | Mizumura et al. | Aug 2017 | S |
D794199 | Mizumura et al. | Aug 2017 | S |
D798718 | Foster et al. | Oct 2017 | S |
D799014 | Suarez et al. | Oct 2017 | S |
D799675 | Wong | Oct 2017 | S |
D800174 | Ghalsasi et al. | Oct 2017 | S |
D801510 | O'Connett et al. | Oct 2017 | S |
D801545 | Wiesli et al. | Oct 2017 | S |
D803381 | Kim et al. | Nov 2017 | S |
D805176 | Avedon | Dec 2017 | S |
D818185 | Wilson | May 2018 | S |
9970457 | Avedon | May 2018 | B2 |
D820967 | Avedon | Jun 2018 | S |
10024531 | Avedon | Jul 2018 | B2 |
D824716 | Elgamil et al. | Aug 2018 | S |
D825090 | Richardson et al. | Aug 2018 | S |
D831484 | Jung et al. | Oct 2018 | S |
D835265 | Inoue | Dec 2018 | S |
D836238 | Ericson, Jr. et al. | Dec 2018 | S |
D838379 | Trump | Jan 2019 | S |
10184489 | Avedon | Jan 2019 | B2 |
D840009 | Suarez et al. | Feb 2019 | S |
D841452 | Conselvan | Feb 2019 | S |
D844126 | Sheng et al. | Mar 2019 | S |
D844128 | Li | Mar 2019 | S |
10221861 | Avedon | Mar 2019 | B2 |
D845461 | Li | Apr 2019 | S |
D845462 | Li | Apr 2019 | S |
D847967 | Hernández et al. | May 2019 | S |
D848295 | Johnson et al. | May 2019 | S |
D850727 | Petruccelli | Jun 2019 | S |
D852143 | Ku | Jun 2019 | S |
D853017 | Rioux et al. | Jul 2019 | S |
D861979 | Sibley | Oct 2019 | S |
D862795 | Caldas | Oct 2019 | S |
D865223 | Spork et al. | Oct 2019 | S |
D865907 | Wagner | Nov 2019 | S |
D868254 | Lintula et al. | Nov 2019 | S |
10487840 | Avedon | Nov 2019 | B2 |
10487852 | Avedon | Nov 2019 | B2 |
D869275 | Taunk | Dec 2019 | S |
D870778 | Johnson | Dec 2019 | S |
D871535 | Ferrer | Dec 2019 | S |
D872911 | Chen | Jan 2020 | S |
D877917 | Schill | Mar 2020 | S |
D880098 | Harrison et al. | Mar 2020 | S |
D881374 | Schoettle | Apr 2020 | S |
D885550 | Avedon | May 2020 | S |
10641506 | Avedon | May 2020 | B2 |
10655841 | Avedon | May 2020 | B2 |
D886275 | Avedon | Jun 2020 | S |
D887541 | Avedon | Jun 2020 | S |
10724542 | Avedon | Jul 2020 | B2 |
D895784 | Wang | Sep 2020 | S |
11053948 | Avedon | Jul 2021 | B2 |
D926963 | Avedon | Aug 2021 | S |
11092330 | Avedon | Aug 2021 | B2 |
11105341 | Avedon | Aug 2021 | B2 |
11221153 | Avedon | Jan 2022 | B2 |
11236766 | Avedon | Feb 2022 | B2 |
D953517 | Belozerova et al. | May 2022 | S |
11365743 | Avedon | Jun 2022 | B2 |
11421710 | Avedon | Aug 2022 | B2 |
11598539 | Avedon | Mar 2023 | B2 |
D987054 | Avedon | May 2023 | S |
11703062 | Avedon | Jul 2023 | B2 |
20010049927 | Toepel | Dec 2001 | A1 |
20020045420 | Taillon | Apr 2002 | A1 |
20020131865 | Larzelere et al. | Sep 2002 | A1 |
20020137454 | Baker | Sep 2002 | A1 |
20030026691 | Huang et al. | Feb 2003 | A1 |
20030092373 | Kuo | May 2003 | A1 |
20030213883 | Fu-Liang | Nov 2003 | A1 |
20040004173 | Johnson | Jan 2004 | A1 |
20040050077 | Kasai et al. | Mar 2004 | A1 |
20040052641 | Chen | Mar 2004 | A1 |
20040240214 | Whitlow et al. | Dec 2004 | A1 |
20040253095 | Sasaki et al. | Dec 2004 | A1 |
20050045793 | Johnson et al. | Mar 2005 | A1 |
20050077446 | Bacon et al. | Apr 2005 | A1 |
20050092888 | Gonce | May 2005 | A1 |
20050159101 | Hrdina et al. | Jul 2005 | A1 |
20060087810 | Rockenfeller | Apr 2006 | A1 |
20060146542 | Sullivan | Jul 2006 | A1 |
20060172688 | Johnson | Aug 2006 | A1 |
20060193139 | Sun et al. | Aug 2006 | A1 |
20060276123 | Sanagi et al. | Dec 2006 | A1 |
20060278766 | Wang | Dec 2006 | A1 |
20060284435 | Vitito | Dec 2006 | A1 |
20070213003 | Railkar et al. | Sep 2007 | A1 |
20070231145 | Jin | Oct 2007 | A1 |
20070246579 | Blateri | Oct 2007 | A1 |
20070297906 | Wu | Dec 2007 | A1 |
20070297912 | Reuter | Dec 2007 | A1 |
20080019836 | Butz et al. | Jan 2008 | A1 |
20080061200 | Bouissiere | Mar 2008 | A1 |
20080188175 | Wilkins | Aug 2008 | A1 |
20080227381 | Avedon | Sep 2008 | A1 |
20090041580 | Wichmann et al. | Feb 2009 | A1 |
20090122516 | Yang | May 2009 | A1 |
20090155080 | Yu | Jun 2009 | A1 |
20090170421 | Adrian et al. | Jul 2009 | A1 |
20090219727 | Weaver | Sep 2009 | A1 |
20090262550 | Inoue | Oct 2009 | A1 |
20100009621 | Hsieh | Jan 2010 | A1 |
20100052495 | Liu et al. | Mar 2010 | A1 |
20100075588 | Haneline | Mar 2010 | A1 |
20100111698 | Wiedman et al. | May 2010 | A1 |
20100176706 | Fu et al. | Jul 2010 | A1 |
20100192611 | Yamaguchi et al. | Aug 2010 | A1 |
20100202932 | Danville | Aug 2010 | A1 |
20100232168 | Horng | Sep 2010 | A1 |
20100266400 | Avedon | Oct 2010 | A1 |
20100295436 | Horng et al. | Nov 2010 | A1 |
20100328881 | Huang | Dec 2010 | A1 |
20100329885 | Criner et al. | Dec 2010 | A1 |
20110037368 | Huang | Feb 2011 | A1 |
20110057551 | Lee et al. | Mar 2011 | A1 |
20110057552 | Weaver | Mar 2011 | A1 |
20110080096 | Dudik et al. | Apr 2011 | A1 |
20110084586 | Lain et al. | Apr 2011 | A1 |
20110133622 | Mo et al. | Jun 2011 | A1 |
20110140588 | Chen | Jun 2011 | A1 |
20110223016 | Ediger et al. | Sep 2011 | A1 |
20110228967 | Kulchy et al. | Sep 2011 | A1 |
20120060453 | Holzmann et al. | Mar 2012 | A1 |
20120062095 | Horng | Mar 2012 | A1 |
20120194054 | Johnston | Aug 2012 | A1 |
20120195749 | Avedon | Aug 2012 | A1 |
20130023195 | Avedon | Jan 2013 | A1 |
20130111721 | Mahfoudh et al. | May 2013 | A1 |
20130196588 | Liao | Aug 2013 | A1 |
20140314560 | Avedon | Oct 2014 | A1 |
20140348634 | Bourrilhon et al. | Nov 2014 | A1 |
20150021013 | Batarseh | Jan 2015 | A1 |
20160107200 | Al-Shafei et al. | Apr 2016 | A1 |
20160146222 | Avedon | May 2016 | A1 |
20180335049 | Gu et al. | Nov 2018 | A1 |
20190010961 | Kumaou | Jan 2019 | A1 |
20200166053 | Avedon | May 2020 | A1 |
20200217530 | Avedon | Jul 2020 | A1 |
20200232470 | Avedon | Jul 2020 | A1 |
20210007449 | Udagawa | Jan 2021 | A1 |
20210040960 | Shih et al. | Feb 2021 | A1 |
20210277914 | Lu et al. | Sep 2021 | A1 |
20210396248 | Gao | Dec 2021 | A1 |
20220042522 | Avedon | Feb 2022 | A1 |
20220120469 | Doat et al. | Apr 2022 | A1 |
20220220975 | Avedon | Jul 2022 | A1 |
20230055245 | Avedon | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
2013203632 | Nov 2016 | AU |
1426729 | Jul 2003 | CN |
101592328 | Dec 2009 | CN |
201560963 | Aug 2010 | CN |
44 13 542 | Oct 1995 | DE |
196 38 518 | Apr 1998 | DE |
10 2008 044874 | Mar 2010 | DE |
0 037 958 | Oct 1981 | EP |
0 212 749 | Mar 1987 | EP |
0 772 007 | May 1997 | EP |
2 248 692 | Nov 2010 | EP |
0 715 101 | Nov 1931 | FR |
2 784 423 | Apr 2000 | FR |
190617978 | May 1907 | GB |
0 792 369 | Mar 1958 | GB |
0 824 390 | Nov 1959 | GB |
0 981 188 | Jan 1965 | GB |
1 251 880 | Nov 1971 | GB |
2 344 619 | Jun 2000 | GB |
2 468 504 | Sep 2010 | GB |
55-032965 | Mar 1980 | JP |
61-502267 | Oct 1986 | JP |
01-067548 | Mar 1989 | JP |
07-167097 | Jul 1995 | JP |
07-253231 | Oct 1995 | JP |
08-219939 | Aug 1996 | JP |
11-132543 | May 1999 | JP |
2001-193979 | Jul 2001 | JP |
2002-349489 | Dec 2002 | JP |
2006-350237 | Dec 2006 | JP |
2010-181124 | Aug 2010 | JP |
20-0176664 | Apr 2000 | KR |
2003-0025428 | Mar 2003 | KR |
10-1255739 | Apr 2013 | KR |
2400254 | Sep 2010 | RU |
M337636 | Aug 2008 | TW |
WO 01034983 | May 2001 | WO |
WO 03040572 | May 2003 | WO |
WO 2005091896 | Oct 2005 | WO |
WO 2006078102 | Jul 2006 | WO |
WO 2008062319 | May 2008 | WO |
WO 2010046536 | Apr 2010 | WO |
WO 2010114702 | Oct 2010 | WO |
WO 2011067430 | Jun 2011 | WO |
WO 2012174155 | Dec 2012 | WO |
WO 2012174156 | Dec 2012 | WO |
WO 2015187856 | Dec 2015 | WO |
WO 2016081693 | May 2016 | WO |
WO 2020214729 | Oct 2020 | WO |
Entry |
---|
“Airius Model R20 EC ‘Eyeball’ Data Sheet”, http://airius.com.au/products/new-retail-series-2/attachment/na_std_retailseries/ published Jun. 15, 2016 as printed May 23, 2017 in 1 page. |
Keeler Hardware, “OC Oval Cylinder Escutcheon”, <https://www.keelerhardware.com.au/products/oc-oval-cylinder-escutcheon> as printed Nov. 13, 2017 in 3 pages. |
“The New Airius Q50 EC”, https://web.archive.org/web/20150721185407/http://airius.com.au/technical/specification-sheets/the-new-airius-q50-ec/ as archived Jul. 21, 2015, pp. 2. |
Number | Date | Country | |
---|---|---|---|
62876514 | Jul 2019 | US | |
62835314 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16849768 | Apr 2020 | US |
Child | 18173440 | US |