This application is related to U.S. patent application Ser. No. 13/332,740 filed by Harold Gene Havard, Jr., et al., on the same day as the present application, entitled “A SYNCHRONOUS AIR BLOWER HAVING A PERMANENT MAGNET MOTOR AND A HVAC SYSTEM EMPLOYING THE SAME”, and incorporated herein by reference in its entirety.
This application is directed, in general, to Heating, Ventilating and Air Conditioning (HVAC) systems and, more specifically, to fans that are used to move air through the HVAC systems.
HVAC systems can be used to regulate the environment within an enclosed space. Typically, an air blower is used to pull air from the enclosed space into the HVAC system through ducts and push the air back into the enclosed space through additional ducts after conditioning the air (e.g., heating, cooling or dehumidifying the air). Various types of HVAC systems, such as roof top units, may be used to provide conditioned air for enclosed spaces.
A common type of air blower that is used to move air through an HVAC system is a belt-driven centrifugal scroll fan. The centrifugal scroll fan includes an impeller that is rotated by a motor via a belt to create system pressure in a HVAC unit and move the air. With the centrifugal scroll fan, there is a scroll with a circular-shape that surrounds the impeller and directs the air to a particular discharge point.
Another type of air blower that is used in HVAC systems is a plug fan. A plug fan includes an open blower wheel with exposed blades that are rotated by a motor. Typically, plug fans are installed within a fan plenum of an HVAC unit when used thereby. The motor is often a direct drive motor that rotates the blower wheel to discharge air in a 360 degree pattern and create system pressure to move air. Plug fans can operate quieter than centrifugal scroll fans since air is discharged radially instead of being forced into a single discharge point by a scroll. Additionally, since plug fans are typically fixed within a fan plenum, the insulation of the plenum can also assist in reducing fan noise.
Unfortunately, locating the plug fan within the fan plenum reduces access for maintenance. Additionally, the open blower wheel creates a danger to maintenance technicians once access to the plug fan is finally obtained. System pressure may also suffer due to the open blower wheel design.
One aspect provides an air moving unit for an HVAC system. In one embodiment, the air moving unit includes: (1) a plug fan with a blower wheel and (2) a circulation enclosure. The circulation enclosure includes: (2A) a back side and (2B) a front side having an inlet orifice corresponding to an intake area of the plug fan, the front side coupled to top, left and right sides that extend therefrom to the back side to form the circulation enclosure, wherein the blower wheel is located within the circulation enclosure and the plug fan is mechanically coupled to at least one side thereof.
In another aspect, an HVAC system is disclosed. In one embodiment, the HVAC system includes: (1) a return air duct, (2) a supply air duct and (3) an air moving unit positioned in the HVAC system to pull return air from the return air duct and discharge conditioned air through the supply air duct. The air moving unit includes: (3A) a plug fan with a blower wheel, and (3B) a circulation enclosure, having a back side, and a front side having an inlet orifice corresponding to an intake area of the plug fan, the front side coupled to top, left and right sides that extend therefrom to the back side to form the circulation enclosure, wherein the blower wheel is located within the circulation enclosure and the plug fan is mechanically coupled to at least one side thereof.
In yet another aspect, an enclosed plug fan unit for an HVAC system is disclosed. In one embodiment, the enclosed plug fan includes: (1) a plug fan with a direct drive motor and a blower wheel and (2) a rectangular parallelepiped-shaped circulation enclosure including six sides, wherein the plug fan is fixed to at least one side of the circulation enclosure and the blower wheel is located within the circulation enclosure.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The disclosure provides an air moving unit having a plug fan with an open blower wheel that is located within a circulation enclosure. The air moving unit is a single enclosed unit that allows easier removal and installation in HVAC units compared to conventional plug fans that are fixed to the HVAC unit, such as located within a fan plenum. Thus, instead of dismantling a portion of the HVAC unit to obtain access, the disclosed air moving unit provides a serviceable plug fan that can be removed as a complete unit and serviced. This is even made easier when the air moving unit is installed on a blower deck that can be moved out of the HVAC housing for servicing. Additionally, since the open blower wheel is located within the circulation enclosure, the disclosed air moving unit provides a safer configuration for this type of air blower with exposed blades.
The circulation enclosure has multiple faces (or sides) that encompass at least the blower wheel of the plug fan. By being located within the circulation enclosure, the open blower wheel is substantially enclosed wherein access to the blades of the blower wheel is only through an inlet orifice and a supply air opening. In addition to a safer configuration, the disclosed air moving unit can improve the blower efficiencies (e.g., cubic feet per minute (CFM) per watt) and static pressure capabilities when compared to the typical open type designs of conventional plug fans. The improved efficiency can be gained due to air flow being directed by the circulation enclosure, the unobstructed mounting pattern which reduces turbulence and minimizing air leak associated with open blower designs. For an unobstructed mounting, the motor can be mounted to a back plate of the circulation enclosure using bolts to attach it thereto.
The circulation enclosure of the air moving unit, therefore, is not merely a box but a designed structure developed through testing and analysis, such as Computational Fluid Dynamics (CFD) analysis. The configuration and dimensions of the circulation enclosure are designed to correspond to the particular plug fan employed and the HVAC type for improved performance. As such, the length, height, width and shape of the circulation enclosure are not simply arbitrary or based on available space in an HVAC unit, but instead correspond to particular plug fans and HVAC units for improved performance.
One skilled in the art will understand that the HVAC system 100 may include additional components and devices that are not presently illustrated or discussed but are typically included in an HVAC system, such as, a power supply, an expansion valve and a condenser fan. A thermostat (not shown) is also typically employed with the HVAC system 100 and used as a user interface. The various illustrated components of the HVAC system 100 may be contained within a single housing (e.g., a cabinet). The HVAC system 100 may include multiple compartments within the housing to isolate and support the multiple components thereof. In one embodiment, the HVAC system 100 is a rooftop unit.
The return air duct 110 and the supply air duct 150 may be conventional ducts used in common HVAC systems to receive return air and discharge conditioned air. The refrigeration circuit 120, the heat exchanger 140 and the HVAC controller 160 may also be conventional devices that are typically employed in HVAC systems. The HVAC controller 160 causes the air moving unit 130 to move the return air across the evaporator coils 124 for cooling and through the heat exchanger 140 for heating to provide conditioned air for the conditioned air space. Operation of the HVAC system 100 can be controlled by the HVAC controller 160 based on inputs from various sensors of the HVAC system 100 and from a thermostat.
The air moving unit 130 is a serviceable, enclosed plug fan unit for the HVAC system 100. The air moving unit 130 includes a circulation enclosure 132, an inlet orifice 133, a direct drive motor 134 and an open blower wheel 136. In one embodiment, the open blower wheel 136 may be a backward curved blower wheel. The circulation enclosure 132 is a rectangular parallelepiped-shaped circulation enclosure. In other embodiments, the air moving unit 130 may have a different shaped circulation enclosure. The circulation enclosure 132 includes six sides that enclose both the direct drive motor 134 and the open blower wheel 136. The air moving unit 130 also includes an electrical interface 138 configured to provide a location for connecting power and control wiring from the direct drive motor 134 to a power supply and the HVAC controller 160. The electrical interface 138 may be a junction box with connectors for terminating the wiring. The electrical interface 138 allows easy installation and removal of the air moving unit 130 when both the direct drive motor 134 and the open blower wheel 136 are enclosed. In some embodiments, a portion of the direct drive motor 134 may extend out of the circulation enclosure 132 allowing access to the wiring connections of the motor 134. The electrical interface 138 may be mechanically coupled to the circulation enclosure 132 via conventional means.
In
An air flow path through the HVAC rooftop unit 200 is represented by the arrows. Air is received in the HVAC rooftop unit 200 via the return duct 210 (i.e., return air) or the outside air duct 215 (i.e., outside air). The dampers 217 can be controlled to determine the air mixture. The received air (e.g., return, outside or a mixture thereof) is then pulled across the filters 230, the evaporator coil 240 and discharged to a conditioned space via the heat exchanger 250 and the supply air duct 290. The air discharged through the supply air duct 290 to the conditioned space may be conditioned due to either a cooling mode or a heating mode of the HVAC rooftop unit 200.
The air moving unit 260 pulls the received air via an inlet orifice 261 and discharges conditioned air through the supply air duct 290 via a supply air opening (not visible in
The HVAC rooftop unit 200 also includes a blower deck 269 in which the air moving unit 260 is mounted. The blower deck 269 is typically constructed to slide or roll to allow easier access to the air moving unit 260. The blower deck 269 is usually constructed of a metal sufficiently rigid to support the air moving unit 260. The blower deck 269 may be coupled to the base 280 for support. The blower deck 269 also includes an opening (not visible) that corresponds to the supply air opening and the supply air duct 290 for discharging air. In some embodiments, the air moving unit 260 may not have a bottom side. In such embodiments, the air moving unit 260 may be coupled to the blower deck 269 and employ the top of the blower deck 269 for a bottom side. In other embodiments having a bottom side, the air moving unit 260 may be coupled to the blower deck 269 via the bottom side.
The air moving unit 300 also includes an inlet orifice 350 for pulling air into the circulation enclosure 301 and discharging air out a supply air opening (not visible) located on the bottom side 340. The blades of the blower wheel may be backward curved blades that create a pressure when rotated to move air through an HVAC system. The plug fan 302 is a belt driven fan wherein a fan shaft 303 extends through the back side of the circulation enclosure 301 to be coupled to a motor via a belt for rotating. Of course, as illustrated in other embodiments, a plug fan with a direct drive motor may be used.
The front side 412 includes an inlet orifice (not visible) wherein received air is pulled in by the plug fan 490. The bottom side 415 includes a supply air opening 419. The plug fan 490 includes a direct drive motor 492, an open blower wheel 494 and a mounting structure 496. The mounting structure 496 is coupled to the front side 412 and the back side 413. A conventional mechanical means may be used to couple the mounting structure 496 to the different sides. The mounting structure 496 fixes the plug fan to the circulation enclosure 410 and supports the plug fan 490. In addition, the mounting structure 496 stabilizes the plug fan 490 when operating. In this illustrated embodiment, the direct drive motor 492 is located within the circulation enclosure 410. In other embodiments, the direct drive motor 492 may extend through an opening in the back side 413, a motor opening, that is denoted by the dashed circle.
The back side 550 has a motor opening wherein a portion of the direct drive motor 510 protrudes therefrom. The direct drive motor 510 can be mounted directly to the back side 550 through conventional means.
The multiple sides form a circulation enclosure having a rectangular parallelepiped shape. A length (L) of the circulation enclosure along a first axis that is perpendicular to the rotation axis is greater than a width along a second axis that is parallel with the rotation axis. The location of the plug fan within the circulation enclosure may vary depending on the type of HVAC unit the air moving unit 500 is employed. As such, the rotation center axis may be centered or off-centered on the back side 550 with respect to the distance between the left side and the right side. For example, the shaft offset distance, d, may be equal to half of L, greater than half of L or less than half of L. The mounting height, h, of the plug fan from the bottom side 560 may also vary depending on the type of HVAC unit in which the air moving unit 500 is employed and the dimensions of the plug fan that is used.
The air moving unit 600 also includes two inlet orifices 650, 651, for pulling air into the circulation enclosure 601 and discharging air out a supply air opening (not visible) located on the bottom side 640. The blades of the blower wheels may also be backward curved blades that create a pressure when rotated to move air through an HVAC system.
The disclosed air moving units with circulation enclosures can lower the indoor blower watts, raise net capacity and improve unit efficiency compared to conventional units. In contrast to open blower designs, the disclosed air moving units with circulation enclosures can allow higher static pressures. The disclosed air moving units with circulation enclosures, therefore, provide serviceable plug fans that can be used to provide more efficient and easier to maintain HVAC units.
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments. For example, the supply air opening may be located on different sides of the circulation enclosure than the bottom side. In some embodiments, the supply air opening may be on the left side, the right side, the back side or the top side. The location of the supply air opening may depend on the configuration of the HVAC unit in which the air moving unit is employed.
Number | Name | Date | Kind |
---|---|---|---|
3412929 | Greenheck | Nov 1968 | A |
4554796 | Stankard | Nov 1985 | A |
5749702 | Datta et al. | May 1998 | A |
6161609 | Ahn | Dec 2000 | A |
20020039529 | Kim | Apr 2002 | A1 |
20030228213 | Bikos et al. | Dec 2003 | A1 |
20050141988 | Hustvedt et al. | Jun 2005 | A1 |
20060010896 | Choi et al. | Jan 2006 | A1 |
20060172693 | Lundquist | Aug 2006 | A1 |
20080203866 | Chamberlain | Aug 2008 | A1 |
20080302120 | Kang et al. | Dec 2008 | A1 |
20090248208 | Fukushima et al. | Oct 2009 | A1 |
Entry |
---|
Trane; Packaged Rooftops; Feb. 2010; 220 pages. |
Aaon; High Efficiency Rooftop Unit, Quick Selection Guide; 2010; 5 pages. |
Number | Date | Country | |
---|---|---|---|
20120131944 A1 | May 2012 | US |