The present invention relates generally to underwater breathing apparatuses, and specifically to an underwater breathing apparatus which includes a controller and compressor for providing air on demand and which permits the control of the speed of compressor based on the pressure and air volume provided by the compressor and the air used by the one or more divers using the underwater breathing apparatus and which is provided with removable batteries in one or more embodiments.
Surface located breathing apparatuses which provide air to underwater divers through a connected hose have been in existence for many years. These breathing apparatuses typically use an electric motor requiring a battery or electric engine requiring fuel. Therefore, the breathing apparatus has a relatively short time period before the battery is all used up or the engine requires more fuel. The present invention is directed to extending the time period between battery replacement or fuel replenishment through the incorporation and use of novel dynamic transducer as part of breathing apparatus technology. The present invention also provides a novel battery connection and which provides for battery removal in the no
In a preferred embodiment, the present invention can provide an underwater breathing apparatus that can include an electric motor or engine, coupled to a compressor means for compressing the ambient air, and a controller in connection with the motor (engine) to control the function of the compressor. A mouth piece is coupled to the stored air within the hoses produced by the compressor for use by the diver using the underwater breathing apparatus. Multiple divers can be connected to the underwater breathing apparatus at the same time, with each diver having his or her own mouthpiece and associated air hose line. The system further contains a power source means for providing power to the compressor means, and to a control circuit means for controlling some of the various functions of the present invention.
In various embodiments, the system can have a compressor powered by an electric motor, gas or diesel engine (all collectively referred to as “power propulsion”), a controller in connection with the power propulsion. The compressor can produce breathing air at a variable spin of the power propulsion. Through the use of a dynamic sensor and pressure switch, the system does not constantly run at all times, and therefore helps to conserve the battery life or the amount of combustible, since the motor is basically stalled at startup and at other times when there is sufficient amount of stored air. The controller can monitor the output pressure and the volume of air (cubic feet per minute—CFM) of the compressor assembly and can adjust the speed of the power propulsion to keep the right pressure available to the mouthpiece based on the air demands of the user(s).
Other benefits of the invention include, but are not limited to, the control of the speed (spinning) of the motor (compressor) to a variable rate, based on the user's needs for more air, conserving the life Of the battery or the amount of combustible.
Also disclose are novel configurations for battery removal and replacements.
As seen in
The continuous-time ratio metric output voltage can be set by the supply voltage. It can vary in proportion to the strength of the magnetic field. The air produced can move the magnet in face of the Hall effect IC and set up the output voltage which can be read by the controller for determining how much to increase or decrease the motor's power.
Sensor 20 can include a housing or cylinder 30 having an internal passageway 32 therethrough extending from a first side 34 to a second side 36. The end of passageway 32 associated with first side 34 can be preferably provided internal threads 38 and the external surface of cylinder 30 adjacent second 36 can be preferably provided with external threads 40.
The sensor can be immune to dust, dirt, mud, and water. These characteristics make Hall Effect devices better for position sensing than alternative means such as optical and electromechanical sensing.
A first end cap 50 can be adjustable and can be screwed in and can be considered the fixed magnet positioned close to the mobile or movable magnet, increasing the force between the magnets. In this way the mobile magnet will be more in front of the IC (hall effect) and will give more amperes to the motor at the end point before it will turn off at preferably, approximately 60 p.s.i., though such value is not considered limiting. Where end cap 50 is rotated in an opposite direction (screwed out), the force between the magnets will decrease and the motor will get less power to the end point. The adjustable end cap will affect simultaneous and direct proportional with the above description of the “start” power consumption from the end point (then the motor will be turn on by the pressure switch. End cap 50 can have external threads 52 is secured at first side 34 of cylinder 30 by the mating of external threads 52 with internal threads 38 located within passageway 32. End 54 of first end cap 50 can be incorporated with a pressure switch in same sensor; and can have attached at 54 a tactile switch as show in
Where first side 62 of magnet 60 abuts end cap 50, then magnet 70 is positioned within passageway 32 such that second side 74 of magnet 70 is closest to magnet 60. Where second side 64 of magnet 60 abuts end cap 50, then magnet 70 is positioned within passageway 32 such that first side 72 of magnet 70 is closest to magnet 60. In either configuration the polarity of the sides of magnet 60 and 70 closest to each other are the same, such that magnets 60 and 70 are not attracted to each other and naturally repel each other. The repelling force of magnet 70 towards magnet 60 in conjunction with the fixed position of end 54 of first end cap 50 causes magnet 60 to remain in a fixed position abutting end 54 virtually at all times during operation.
A piston or plunger or other movable member (collectively referred to as “piston 80”) is at least partially positioned and movable within passageway 32 for moving magnet 70 within passageway 32 as will be discussed in detail below. Piston 80 has a rod 82 or other contact member which contacts one of the sides of magnet 70. This contact between rod 82 and magnet 70 remains virtually at all times during operation in view of magnet 60 and magnet 70 naturally repelling each other as discussed above.
A second end cap 90 having internal threads 92 at a first end 94 is secured to second side 46 of cylinder 30 by the mating of external threads 40 of cylinder 30 with the internal threads 92 of second end cap 90. The opposite end 96 of second end cap 90 is provided with external threads 98 for mating with a hose line (not shown) or any other conduit used for transporting air from a compressor, which will be discussed in more detail below. An o-ring 100 or other sealing device (i.e. gasket, etc.) can be disposed within second end cap to help prevent leakage of air. A passageway 102 is provided within second end cap 90 from first end 94 to second end 94 to permit air traveling through the hose attached to second end 98 to enter second end cap and contact piston 80, the purpose of which will be discussed in more detail below.
A cutout can be provided in the surface of cylinder 30, for receipt of a magnetic sensing element, preferably in the form of an integrated chip though such is not considered limiting, which senses the movement of magnet 70 within passageway 32. A pressure switch 105 can be provided and is in communication with hose line 161 that is secured to second end 96 of second end cap 90 and is in communication with a controller 130 used to control the operation of a power propulsion device (i.e. electric motor, etc.) 140 of a compressor assembly 150. Pressure switch 105 serves as an on/off switch for controller 130 and magnetic sensor 20 serves as a speed control which determines how fast to run power propulsion 140/compression assembly 150 when pressure switch 105 is closed, which causes controller 130 to be “on”.
Compressor assembly 150 for generating breathable air has an outlet 152 having an air hose line 154 (or other conduit) connected thereto. The single inlet of a splitting manifold, such as, but not limited to, a “T” or “Y” can be connected the opposite end of the hose line. A second hose line 156 is connected at one end to the first outlet of the splitting manifold and at its second end to a mouthpiece worn 158 by the user requiring breathable air (i.e. underwater user, etc.). A third hose line 161 is connect at one to the second outlet of the splitting manifold and at its second is secured to second end 96 of second end cap 90, as described above.
Virtually at the moment air is added to the hose lines by compressor 150, air pressure is built up within the second hose line connected to the mouthpiece and also within the third hose line connected to second end cap 90. In view of passageway 102 of second end cap 90, the air pressure in the third hose line is permitted to push upon piston 80 (i.e. input to piston 80) which will provide sufficient force (i.e. enough to overcome the natural repelling force between magnets 60 and 70) to allow piston 80 to move magnet 70 closer to magnet 60. Thus, magnet 70 moves with the movement of piston 80. As will be described below, the movement and position of magnet 70 as read by the magnetic sensing element located in the cutout of cylinder 30 will determine whether to increase or decrease the speed of power propulsion 140, when pressure switch 105 is in closed position and controller 130 is “on”. A variation of the magnetic field caused by the movement of magnet 70, translates into a variation of voltage provided by controller 130. The variation in voltage from controller 130 determines whether power propulsion 140 will be driven with high rpm or low rpm.
In use, prior to the user breathing from mouthpiece, pressure in the hose lines is at a maximum, providing piston 80 with sufficient force to push or move magnet 70 closest to magnet 60. In one embodiment this pressure can be anywhere from about 50 psi to about 65 psi, and preferably about 55 psi. Pressure switch 105 is set such that when the set pressure reading (i.e. about 65 psi, etc.) is reached, pressure switch 105 opens to turn off controller 130, since air within the hose lines is at a maximum, thus, there is no need to run compressor assembly 150, since there is no need for additional air. As compressor assembly 150 is not running at all times during use, power consumption is conserved, allowing the air on demand breathing device to operate at a longer period of time.
The same functionality and description described made for pressure switch 105 can be applicable when using a compilation sensor (magnetic and pressure switch) 500 (see
With the present invention described above and below, the functionality can have a direct relation of the force between the magnets, magnet and a compression spring (
The present invention provides for more ergonomic size, is easy to connect and takes up less space.
The dimension of the sensor can be the same.
As the user breathes through mouthpiece 158 air is removed from within the hose lines, which causes the pressure to drop and once the pressure drops below the selected threshold (i.e. about 55 psi, etc.), pressure switch 105 closes causing controller to be turned “on”. The reduction of air pressure in the hose lines, also reduces the force being provided by piston 80 against magnet 70, thus permitting magnet 70 to move away from magnet 60 (in view of the repelling forces between the magnets). The sensing element senses this movement and sends a signal to controller 130 to increase the speed of power propulsion 140/compressor 150 to generate and release more air into the hose lines through outlet 152. The further apart magnet 70 is from magnet 60 correspondingly increases the speed of power propulsion 140/compressor 150. At a certain point, the air outputted into the hose lines from compressor 150, will cause the pressure (pounds per square inch—psi) in the hose lines to increase which causes piston 80 to create more force to move magnet 70 closer to magnet 60, which in turn reduces the speed of power propulsion 140/compressor 150. Also, once the increase in pressure within the hose lines exceeds the selected threshold (i.e. about 55 psi, etc.), pressure switch 105 will open or (close), which turns off controller 130, and thus conserves the energy from battery pack 160, to permit it last longer in duration in use. As the user draws air through the mouthpiece, the above process repeats itself as needed.
The transducer can work in a large range of pressure and is not limited to the above values, which are used for example purposes only and in connection with the graph shown in
Though two magnets are preferred, other devices, including a magnet and spring (
It should also be recognized that the system produces air, as needed, in a dynamic relationship with respect to the inhaling and exhaling of the users, the number of users associated with the system at one time, the underwater breathing experience of the user(s), the lung capacity of the user(s). All of these factors may play a part in the amount of air needed to be produced by the compressor in accordance with the operations of the present invention. Thus, the present invention sensor and system can also be considered as a dynamic sensor/system in addition to its variable characteristics; producing air in the most efficient way.
As seen in
Relay 230, preferably a solid state relay can be provided for ignition protection, and along with delay timer 232 preferably included with the circuitry, is provided as a safety feature. After a period of time, the energy provided by battery 160 will be used up and battery 160 will be dead and need to be changed (or recharged). In the event the user does not turn the overall system on/off switch to the “off” position when replacing battery 160, upon replacement with a “non-dead” battery, an ignition spark can be created if the switch is in the “on” position as the system will take current right away. To prevent, or at least help minimize, the chance of an ignition spark being created, delay 232 prevents the energy from the new battery added to system 200 from being available for a short period of time preferably about 3 seconds to about 5 seconds (i.e. enough time to prevent an ignition spark from occurring). Once the period of time has to be reached, relay 230 closes and the energy from the new battery is available for use. Thus, relay 230, with timer 232, delays the direct start of the system. The delay can be preferably adjustable, and preferably within the range of up to about 5 seconds. However, this range is not considered limiting. Additionally, a preferred delay setting can be 3 seconds, which again is not considered limiting and other values within the above-mentioned preferred range or outside of such range can also be selected and are considered within the scope of the invention.
As seen in
As seen in
System 200 is designed such that batteries 162 and 164 can be replaced and removed and connected in series quickly and easily and without the necessity of any tools. As such system 200 makes the battery replacement safe, ergonomically feasible and a tool-free operation.
All measurements, amounts, sizes, shapes, percentages, configurations, securement or attachment mechanisms, sensing members, sealing members, numbers, ranges, frequencies, values, percentages, materials, orientations, methods of manufacture, etc. discussed above or shown in the drawing figures are merely by way of example and are not considered limiting and other measurements, amounts, sizes, shapes, percentages, configurations, securement or attachment mechanisms, sensing members, sealing members, numbers, ranges, frequencies, values, percentages, materials, orientations, methods of manufacture, etc. can be chosen and used and all are considered within the scope of the invention.
Furthermore, one or more features or characteristics discussed for one embodiment of the present invention can also be used with another of the above discussed embodiments of the present invention.
Unless feature(s) or characteristic(s) described in the specification or shown in the drawings for a claim element or claim term specifically appear in the claim with the claim element or claim term, then the inventor does not considered such feature(s) or characteristic(s) to be included for the claim element or claim term in the claim when and if the claim element or claim term is interpreted or construed.
While the invention has been described and disclosed in certain terms and has disclosed certain embodiments or modifications, persons skilled in the art who have acquainted themselves with the invention, will appreciate that it is not necessarily limited by such terms, nor to the specific embodiments and modification disclosed herein. Thus, a wide variety of alternatives, suggested by the teachings herein, can be practiced without departing from the spirit of the invention, and rights to such alternatives are particularly reserved and considered within the scope of the invention.
While the invention has been described and disclosed in certain terms and has disclosed certain embodiments or modifications, persons skilled in the art who have acquainted themselves with the invention, will appreciate that it is not necessarily limited by such terms, nor to the specific embodiments and modification disclosed herein. Thus, a wide variety of alternatives, suggested by the teachings herein, can be practiced without departing from the spirit of the invention, and rights to such alternatives are particularly reserved and considered within the scope of the invention.
This application claims the benefit of and priority to U.S. Patent Application Ser. No. 61/317,685, filed Mar. 25, 2010, and is a continuation-in-part of U.S. patent application Ser. No. 13/048,843, Filed Mar. 15, 2011, both applications are incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61317685 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13048843 | Mar 2011 | US |
Child | 13072532 | US |