1. Field of Invention
The present invention is related to an air-pressure booster and, especially, to an air-pressure booster which could improve efficiency of air input and torque of an engine.
Description of the Related Art
Internal combustion engines, such as reciprocating engines, are used in cars, motorcycles boats or mowers for applying direct force to some component of the engine. The force is applied typically to pistons, turbine blades, or a nozzle. This force moves the component over a distance, transforming chemical energy into useful mechanical energy. The force is generated by four processes including air input, compression, explosion and air output in the engine where air and fuel were fully mixed. Therefore, the oil-gas ratio is an important parameter for the engines. A well oil-gas ratio may promote fuel usage, enhance the output of force and decrease the volume of gas exhaust.
However, the pass way of air injection comprises an air intake pipe, a throttle, an air intake manifold and ports. If the components are aging, the volumes of air intake into the engine reduce, and fuel could not be used efficiently. Therefore, oil consumption increase, and torque of an engine decrease.
To solve the above problems, a turbo charger is used. However, the gear-set and exhaust turbine of the turbocharger are very heavy, leading to higher oil consumption. Furthermore, the structure of the turbocharger is complex. Therefore, such turbocharger is not convenient for normal users.
Therefore, there is a need for a simple air-pressure booster, to overcome the above-mentioned disadvantages.
To solving the above-mentioned disadvantages, the present invention is related to an air-pressure booster and, especially, to an air-pressure booster which could improve efficacy of air input and power output of an engine.
The air pressure booster provides an indirect flow pass and a straight flow pass inside an outer tube. Corresponding to a front end of the flow pass, the air-pressure booster has a tapered neck. The interior space of the tapered neck is communicated with the flow and the indirect flow pass. The present invention may connect to an air inlet of engine, air is sucked into the engine through the flow passes, and a negative pressure generated. When a rapid air is output by the straight flow pass and when a slow air is output by the indirect flow pass, the air will form a swirl in an air space to increase speed and pressure of air input of the engine.
Therefore, the efficiency of the engine will increase, and the fuel waste will decrease The present invention provides a convenient way for increasing the efficiency of an engine. With a simple structure of the present air-pressure booster, air passes the booster without energy providing. The booster of the present invention will improve efficiency of air input and torque of an engine.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
With reference to
The housing (10) has a tube (11) which may be shaped as a cylinder. The tube (11) has four slots (111) being equidistantly formed on a post end of an outer surface of the tube (11). The tapered neck (12) has an inner surface being conical, and the tapered neck (12) is connected with an air output nozzle (13). The diameter of the nozzle (13) is less than the tube (11). The tapered neck (12) and the tube (11) are coaxial.
With reference to
With the reference of
When each first cap (21) is assembled, the ridges (2121) insert into the corresponding grooves (2131) of the neighboring first cap (21), and the holes (214) on each first cap (21) are staggered at different sides of each cap (21) to form part of the indirect flow pass (C).
With the reference of
With reference to
With reference to
When the sealing cap (24) is assembled next to the second cap assembly (22), the ridges (2421) are inserted into the corresponding grooves (2331) of the neighboring second cap (23), and the hooks (2431) on the sealing cap (24) hook the slots (111) of the tube (11) to mount cap assembly (20,22,24) inside the tube (11).
With reference to
In a preferred embodiment of the present invention, the amounts of the first caps (21) may be 9, but not limited as 1, 3, 5,10 or the like. Further, the holes (214) formed on the first caps (21) may be one and more, and the shape and the size of the holes (214) is not limited. In another preferred embodiment of the present invention, the amounts of the second caps (23) may be 4, but not limited as 1 or 3 or the like. Further, the holes (234) formed on the second caps (23) may be one and more, and the shape and the size of the holes (234) is not limited.
Furthermore, the shape of the housing (10) is not limited to a cylinder tube, as other kinds of shapes are allowed, such as a square tube, and shapes of the cap assembly (20, 22, 24) are also changed to correspond to the housing (10). To improve the clearance of the air, a filter may be mounted following the sealing cap (24).
In the first preferred embodiment of the present invention, the sealing cap (24) may be optionally mounted inside the tube (11). The cap assembly (20, 22) may be directly mounted inside the tube (11), such as by bonding or welding.
With reference to
When the engine (30,32) is working, a negative air pressure is formed, and a force sucks air into the air-pressure booster of the present invention. Air will pass by the indirect flow pass (C) and direct flow pass (B) and then flow into the engine (30, 32).
Because the length of the indirect flow pass (C) is longer than the direct flow pass (B) and the amounts of holes (244, 234, 214) on the caps (24, 23, 21) are reduced sequentially, the rate of air flow will become lower and finally flows in the air space (A). The air flow may speed up by colliding the inner surface of the tapered neck (12), and, then, the air outputs by a spiral from the air output nozzle (13). Further, the direct flow pass (B) is straight, the length is shorter than the indirect flow pass (C), and the air pass by direct flow pass (B) will be faster to output from the nozzle (13).
Due to the air flow rates of the direct flow pass (B) and indirect flow pass (C) are different, the air forms as a whirlpool and speeds up the rate and the pressure of the air output. By connecting to the working engine (30, 31) which forms a low pressure to increase efficiency of air intake, the fuel will be used efficiently, and the fuel consumption of the engine is decreased. Moreover, the power output of the engine is also increased because of higher air input efficiency.
With reference to
In a second preferred embodiment of the present invention, the shape of the tapered neck (12A) may be hemispherical.
In the first and second preferred embodiments of the present invention, the flow guide structure (X) comprises a direct flow pass (B) and an indirect flow pass (C) which are formed by the first cap assembly (21), the second cap assembly (23) and the sealing cap (24). The flow guide structure (X) also may be formed by other types of the direct flow pass (B) and the indirect flow pass (C) as shown in the following third, fourth and fifth preferred embodiments to generate a flow whirlpool and to increase air flow rate and air pressure.
With reference to
The flow guide structure (Y) is formed by a central tube (40) and a spiral van (41). The location of the central tube (40) is mounted at the axial center of the tube (11) as the direct flow pass (B). The diameter of the central tube (40) is less than the air output nozzle (13). The spiral van (41) is mounted on the outer surface of the central tube (40) like a spiral ladder and forms the indirect flow pass (C). The surface of the spiral van (41) may be a rough surface. The length of the indirect flow pass (C) is longer than the direct flow pass (B).
When the third preferred embodiment of the present invention is used, the air flow rate from the indirect flow pass (C) is lower than the air rate from the direct flow pass (B). Further, the rough surface of the spiral van (41) will slow down the air rate generated from the indirect flow pass (C). Due to the different rates generated by the indirect flow pass (C) and the direct flow pass (B), the air will form the whirlpool in the inner space of the tapered neck (12) to enhance the output force and the rate.
The length of the central tube (40) of the third preferred embodiment of the present invention may be equal to the tube (11) or longer than the tube (11) for extending outside to the tube (11).
With reference to
The post-sealing board (51) is mounted inside one end of the tube (11) opposite the tapered neck (12), and has a post-opening (511) formed on the board (51). The front sealing board (52) is mounted inside at the end of the tube (11) nearby the tapered neck (12), and has a front-opening (521) formed on the board (52). The first partition (53), the second partition (54) and the third partition (55) are mounted vertically and inside the tube (11) at equal intervals. The ends of the first partition (53) connect to the post-sealing board (51) and the front sealing board (52), respectively. One end of the second partition (54) is mounted on the post-sealing board (51), and the post-opening (511) is formed between the second partition (54) and the third partition (51). A gap is formed between the second partition (54) and the front sealing board (52). One end of the third partition (55) is mounted on the front sealing board (52), and the front-opening (521) is formed between the second partition (54) and the third partition (55). A gap is formed between the third partition (55) and the post-sealing board (51). The indirect flow pass (C) is formed between the post-opening (511) and the front-opening (521), and communicates with the air space (A). The distance of the indirect flow pass (C) is longer than the direct flow pass (B).
When the fourth preferred embodiment is used, reciprocating air passes the indirect flow pass (C) at a vertical direction. Since the distance of the indirect flow pass (C) is longer than the direct flow pass (B), the air rate generated by the indirect flow pass (C) is lower than the air rate generated by the direct flow pass (B). Further, the rough surfaces of the partitions (53-55) also slow down the air rate generated by the indirect flow pass (C). Due to the different rates generated by the indirect flow pass (C) and the direct flow pass (B), the air will form a whirlpool in the inner space of the tapered neck (12) to enhance the output force and the rate.
The length of the central tube (50) of the fourth preferred embodiment of the present invention may be equal to the tube (11) or longer than the tube (11) for extending outside the tube (11).
With reference to
The fan (61) has a frame (611) for mounting between the inner surface of the tube (11) and the central tube (60). The central tube (60) is mounted through the center of the frame (611). Multiple vans (612) are rotatable mounted on the central tube (60).
When the fifth preferred embodiment is used, air passes the fan (61) and becomes a vortex force. Since the vortex moving distance is longer than the direct flow pass (B), the air rate generated by the vortex is lower than the air rate generated by the direct flow pass (B). Due to the different rates generated by the vortex and the direct flow pass (B), the air will form a whirlpool in the inner space of the tapered neck (12) to enhance the output force and the rate.
In a preferred embodiment, one and more of the fans (61) may be set inside the tube (11).
In another preferred embodiment, the length of the central tube (60) of the fifth preferred embodiment of the present invention may be equal to the tube (11) or longer than the tube (11) for extending outside the tube (11).
With reference to
The housing (70) has a tube (71) with a front end and a post end, a cap (72) and a sealing cap (73). The cap (72) is mounted on the front end of the tube (71), and the cap (72) has a tapered neck (721) and an air output nozzle (722) communicated with the tapered neck (72). An air space (A) is formed inside the tapered neck (721). The sealing cap (73) is mounted on the post end of the tube (71) and may have a filter (732).
The flow guide structure (N) has a central tube (75) and multiple sheets (76) around the central tube (75). The location of the central tube (75) is mounted at the axial center of the tube (71) as the direct flow pass (B), and extends into the air space (A) of the tapered neck (72) facing the air output nozzle (73).
The multiple sheets (76) are sheets mounted separately inside the tube (71). The ends of adjacent sheets (76) are located at opposite inner surfaces of the tube (71), and have gaps between the free ends of the sheets (76) to form the indirect flow pass (C) communicating with the air space (A). Each sheet (76) has a mounting hole (761) for the central tube (75) to pass through. The surfaces of each sheet (76) are rough surface. The distance of the indirect flow pass (C) is longer than the direct flow pass (B).
When the sixth preferred embodiment is used, air passes the indirect flow pass (C) and the direct flow pass (B). Since the distance of the indirect flow pass (C) is longer than the direct flow pass (B), the air rate generated by the indirect flow pass (C) is lower than the air rate generated by the direct flow pass (B). Further, the rough surfaces of the sheets (76) also slow down the air rate generated by the indirect flow pass (C). Due to the different rates generated by the indirect flow pass (C) and the direct flow pass (B), the air will form a whirlpool in the inner space of the tapered neck (72) to enhance the output force and the rate.
The invention thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
105100639 A | Jan 2016 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
1823811 | Watkins | Sep 1931 | A |
1828816 | Pierson | Oct 1931 | A |
1853838 | White | Apr 1932 | A |
1922469 | Borthwick | Aug 1933 | A |
2024665 | Snell | Dec 1935 | A |
2114783 | Kowitt | Apr 1938 | A |
2184918 | Kowitt | Dec 1939 | A |
2267706 | Baile | Dec 1941 | A |
2388213 | Mock | Oct 1945 | A |
2670055 | Dorman | Feb 1954 | A |
2808893 | Dorman | Oct 1957 | A |
3757751 | Kitchin | Sep 1973 | A |
3948234 | Shumaker, Jr. | Apr 1976 | A |
4351302 | Brettler | Sep 1982 | A |
4373940 | Petersen | Feb 1983 | A |
4459141 | Burrington | Jul 1984 | A |
4695225 | Hellat | Sep 1987 | A |
7171986 | Canova | Feb 2007 | B2 |
7267098 | Tasanont | Sep 2007 | B1 |
7665442 | Levitz | Feb 2010 | B1 |
8322381 | Glanville | Dec 2012 | B1 |
9051900 | Teng | Jun 2015 | B2 |
9222403 | Hill | Dec 2015 | B2 |
9228542 | Anderson | Jan 2016 | B2 |
9394825 | Dziubinschi | Jul 2016 | B2 |
9488139 | Rollins | Nov 2016 | B2 |
9587566 | Ito | Mar 2017 | B2 |
9689334 | Klassen | Jun 2017 | B2 |
20030072214 | Fleischli | Apr 2003 | A1 |
20080060712 | Gluzman | Mar 2008 | A1 |
20080210325 | Aroussi | Sep 2008 | A1 |
20090050105 | Shibata | Feb 2009 | A1 |
20120222764 | Hermann | Sep 2012 | A1 |
20130153074 | Gurr | Jun 2013 | A1 |
20130319380 | Hommes | Dec 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20170198630 A1 | Jul 2017 | US |