Pursuant to 35 U.S.C. § 119 and the Paris Convention, this application claims the benefit of Chinese Patent Application No. 202122143780.3 filed Sep. 6, 2021, the content of which is incorporated herein by reference.
The present application relates to the field of air purification technology, and more particularly to an air purifier.
As people pay more attention to the environment, the use of air purifiers is increasing. An air purifier generally draws air through a fan to generate suction, so that the air is filtered and purified by a filter assembly, and then sent out from the air outlet. For a vertical air purifier, filter cartridge is generally used to suck air around the filter cartridge to improve purification efficiency. However, this purification structure only blocks harmful molecules, bacteria, etc. on the filter cartridge, and the purification efficiency is poor.
An object of embodiments in the present application is to provide an air purifier to solve the problem that the air purifier in the existing technologies can only block harmful molecules, bacteria, etc. on the filter cartridge, the purification efficiency is poor and the bottom of the casing is easy to wear.
To achieve the above object, the technical solution adopted in the embodiments of the present application is to provide an air purifier, including a casing, a fan, and a filter, where the fan and the filter are installed in the casing. The casing defines air intake holes at a position in the proximity of the filter, and defines an air outlet at an end of the casing in the proximity of an air outlet end of the fan. The filter is in a cylindrical shape. The air purifier also includes a photocatalytic module. The photocatalytic module includes a photocatalytic cylinder having a cylindrical shape; and a light source for irradiating the photocatalytic cylinder. The photocatalytic cylinder is disposed in the filter, an upper end of the photocatalytic cylinder is supported in the casing, and the light source is installed in the casing.
In an optional embodiment, the light source is an LED module, and the LED module is disposed above the photocatalytic cylinder.
In an optional embodiment, the upper end of the photocatalytic cylinder is adaptively connected to an upper end of the filter.
In an optional embodiment, the upper end of the filter is provided with an internal thread, the upper end of the photocatalytic cylinder is provided with an external thread, and the internal thread is engaged with the external thread in a fitted manner; or alternatively, the upper end of the filter is provided with an inner rotary buckle, and the upper end of the photocatalytic cylinder is provided with an outer rotary buckle, and the inner rotary buckle is engaged in a snap-fitted manner with the outer rotary buckle.
In an optional embodiment, the photocatalytic cylinder includes: a photocatalytic net having a ring shape; and a purification plate for removing harmful gases in the air, in which the purification plate is installed at a bottom of the photocatalytic net.
In an optional embodiment, the purification plate is honeycomb-like or reticulate.
In an optional embodiment, the filter includes: a filter cylinder; and a bottom cover installed at a bottom of the filter cylinder. The filter cylinder is extended into the casing, a plurality of the air intake holes are disposed on a side of the casing corresponding to the position of the filter cylinder. The photocatalytic cylinder is extended into the filter cylinder, and the casing has an open bottom, the bottom cover is detachably covered on the bottom of the casing.
In an optional embodiment, an inner surface of a lower end of the casing is provided with a plurality of support ribs, and a side surface of the bottom cover is provided with convex ribs that are operably supported on the support ribs, where a groove is provided between two adjacent support ribs for the convex rib to pass through.
In an optional embodiment, the support rib is provided with a positioning groove, and the convex rib is provided with a positioning convex matched with the positioning groove.
In an optional embodiment, the convex rib is provided with a limit protrusion for stopping a side surface of the support rib.
The beneficial effects of the air purifier provided by the embodiments of the present application are that: compared with the prior art, the air purifier of the present application is provided with a photocatalytic module that can decompose harmful gases in the air and has a sterilization effect, which improves the performance of purification. The photocatalytic cylinder and the filter both have a cylindrical shape, and the photocatalytic cylinder is disposed in the filter, which reduces occupied space, and the air filtered by the filter can better enter the photocatalytic cylinder, and then enter the fan, thus the purification efficiency is higher.
In order to illustrate the technical solutions in the embodiments of the present application more clearly, the drawings that need to be used in the description of the embodiments or exemplary technologies will be briefly described herein below. Obviously, the drawings in the following description are merely some embodiments of the present application, for those of ordinary skill in the art can obtain other drawings on the basis of these drawings without creative labor.
Among them, the main reference signs in the figures are listed as follows:
In order to make the objects, technical solutions and advantages of the present application more comprehensible, the present application will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described here are merely used to illustrate the present application, and are not intended to limit the present application.
It should be noted that when an element is referred to as being “fixed to” or “disposed/provided on” another element, it can be directly on the other element or indirectly on the other element. When an element is referred to as being “connected to” another element, it can be directly connected to the other element or indirectly connected to the other element.
In addition, the terms “first” and “second” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “a/the plurality of” means two or more, unless otherwise specifically defined.
In the description of the present application, it should be understood that direction or position relationship indicated by terms of “center,” “longitudinal,” “transverse,” “length,” “width,” “thickness,” “upper,” “lower,” “front,” “back,” “left,” “right,” “vertical,” “horizontal,” “top,” “bottom,” “inner,” “outer” and the like, are based on the orientation or position relationship shown in the drawings, which are merely used for the convenience of describing the present application and simplifying the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, it thus cannot be understood as a limitation to the present application.
In the present application, it should be noted that, unless otherwise clearly specified and defined, the terms “installed/mounted,” “in connection with,” “connected/coupled,” “fixed” should be understood in a broad sense. For example, they may be connected or detachably connected or integrated; they may be connected in a mechanical connection or an electrical connection; they may be directly connected or indirectly connected through an intermediate medium, and it may be an internal communication of two elements or an interaction relationship between two elements. For those of ordinary skill in the art, the specific meaning of the above-mentioned terms in the present application can be understood according to specific circumstances.
In the present application, description with reference to terms “an/one embodiment,” “some embodiments” or “the embodiment” means specific features, structure, or characteristics described in conjunction with the embodiment may be included in one or more embodiment of the present application. Therefore, the terms “in one embodiment,” “in some embodiments,” “in some other embodiments,” “in some other embodiments” etc. used in different places in this specification are not necessarily all refer to the same embodiment, instead, it means one or more but not all embodiments, unless otherwise specifically emphasized in other ways. In addition, the specific features, structures, or characteristics in one or more embodiments may be combined in any suitable manner.
The English original expression corresponding to the English abbreviations used in this application are as follows:
LED: Light Emitting Diode.
TVOC: Total Volatile Organic Compounds.
Referring to
When the fan 20 is running, along the air flow direction, an end where the air enters the fan 20 is an air inlet end of the fan 20, and an end where the air flows out of the fan 20 is an air outlet end of the fan 20.
The casing 10 is provided with air intake holes 121 disposed at a position corresponding to the filter 30. The casing 10 is also provided with an air outlet 110 disposed at an end of the casing 10 close to an air outlet end of the fan 20.
The photocatalytic module 40 is provided between the filter 30 and the fan 20. The photocatalytic module 40 can decompose organic molecules in the passing air to decompose harmful gases, and can play a sterilization effect to improve the purification performance.
During use, as the fan 20 runs, air enters the casing 10 from the air intake holes 121, thereby being filtered by the filter 30, purified by the photocatalytic module 40, and then enters the fan 20 through the air inlet end of the fan 20 to be pressurized, and then flows out from the air outlet end of the fan 20, and then flows out of the casing 10 through the air outlet 110 to achieve air purification.
Referring to
Compared with the prior art, the air purifier 100 provided in the present application, by providing a photocatalytic module 40, can decompose harmful molecules and perform a sterilization, and thus the performance of purification can be improved. The filter 30 and the photocatalytic cylinder 42 are both provided in a cylindrical shape, and the photocatalytic cylinder 42 is disposed in the filter 30, which can reduce the occupied space, and the air filtered by the filter 30 can better enter the photocatalytic cylinder 42 for sterilization, and then enter the fan 20, thus the purification efficiency is higher.
In one embodiment, referring to
In one embodiment, the bottom cover 32 and the filter cylinder 31 are fixed into an integral structure, so that when the filter 30 is replaced, it is more convenient to disassemble and assemble.
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, the inner surface of the lower end of the casing 10 is provided with a plurality of support ribs 123. A side surface of the bottom cover 32 is provided with a plurality of convex ribs 321, and the convex rib 321 is configure to be supported on the support rib 123, namely, the bottom cover 32 is mounted on the casing 10 by fitting the convex rib 321 on the support rib 123. Between two adjacent support ribs 123, a groove 124 is provided for the convex rib 321 to pass through. That is to say, during assembly, the convex rib 321 is inserted into the casing 10 through the groove 124 between the adjacent two support ribs 123, the bottom cover 32 is then rotated to support the convex ribs 321 on the corresponding support ribs 123 to install the bottom cover 32, which is convenient for assembly. In other embodiments, the bottom cover 32 may also be installed on the bottom of the casing 10 by screwing. It should be understood that the bottom cover 32 may also be fixed to the bottom of the casing 10 with screws.
In one embodiment, when the lower end of the casing 10 is provided with the reinforcement ring 122, the support rib 123 may be provided on the reinforcement ring 122 to more stably fix the support rib 123 and ensure that the support rib 123 can stably support the convex rib 321, and then fix the bottom cover 32.
In one embodiment, the support rib 123 is provided with a positioning groove 1231, and the convex rib 321 is provided with a positioning convex 322. When the convex rib 321 is extended into the casing 10, the bottom cover 32 is rotated to make the positioning convex 322 on the convex rib 321 comes into the positioning groove 1231 on the support rib 123, so that the convex rib 321 and the support rib 123 are positioned to fix the bottom cover 32, which is convenient for assembly.
In one embodiment, the convex rib 321 is provided with a limit protrusion 323 for stopping a side surface of the support rib 123. During assembly, when the convex rib 321 extends into the casing 10, the bottom cover 32 is rotated, and the side of the support rib 123 blocks the limit protrusion 323, that is, the limit protrusion 323 rotates with the bottom cover 32, and when the limit protrusion 323 reaches the side of the support rib 123, the bottom cover 32 cannot continue to rotate, so as to limit the rotation of the bottom cover 32, such that a rotation position of the convex rib 321 can be determined to ensure that the convex rib 321 is well supported on the support rib 123, thereby the bottom cover 32 is installed on the casing 10. In addition, with this structure, when the bottom cover 32 needs to be removed, the bottom cover 32 can be rotated in a reverse direction the bottom cover 32 can be taken out after the limit protrusion 323 reaches a side of the adjacent support rib 123, and then the filter 30 can be taken out, which facilitates the replacement of the filter 30.
In one embodiment, the bottom surface of the bottom cover 32 is provided with two recesses 324 spaced apart, and a knob 325 is formed between the two recesses 324 to facilitate the rotation of the bottom cover 32, then the bottom cover 32 can be conveniently installed at the bottom of the casing 10. In addition, this structure also enables the bottom of the knob 325 to remain flat with the bottom of the bottom cover 32 for placement on the surface of a medium, thereby facilitating the placement of the air purifier 100.
In one embodiment, the filter 30 also includes a ring cover 33 which is installed on the upper end of the filter cylinder 31 to increase the structural strength of the filter 30 and better ensure the filter cylinder 31.
In one embodiment, referring to
In one embodiment, an upper end of the photocatalytic cylinder 42 may be connected to the upper end of the filter cartridge 31, so that the photocatalytic cylinder 42 can be taken out of the casing 10 during a disassembling of the filter 30. In this way, when replacing the filter 30, the photocatalytic cylinder 42 can be replaced together. It should be understood that, the photocatalytic cylinder 42 may also be cleaned, during a replacement of the filter 30.
In one embodiment, the upper end of the photocatalytic cylinder 42 is matched with the upper end of the filter cylinder 31, so that the outer side of the photocatalytic cylinder 42 is adaptively connected to the inner side of the filter cylinder 31. In this way, a gap between a side wall of the photocatalytic cylinder 42 and the filter cylinder 31 may be smaller, so that an inner diameter of the photocatalytic cylinder 42 can be made larger, and the area of the photocatalytic cylinder 42 can be increased thereby improving the purification capability.
In one embodiment, an internal thread may be provided on the upper end of the filter cylinder 31, and an external thread may be provided on the upper end of the photocatalytic cylinder 42, such that the photocatalytic cylinder 42 and the filter cylinder 31 can be fixedly connected through a cooperation of the internal thread and the external thread. This structure makes the air filtered by the filter cylinder 31 are processed by the photocatalytic cylinder 42, which can improve the ability and efficiency of air purification.
In one embodiment, an internal thread may be provided on the ring cover 33 and an external thread may be provided on the photocatalytic cylinder 42, thereby the photocatalytic cylinder 42 is fixedly connected to the ring cover 33. It should be understood that the upper end of the photocatalytic cylinder 42 may also be directly supported on the casing 10.
In one embodiment, the photocatalytic cylinder 42 includes an annular sleeve and a bottom plate installed at a bottom of the annular sleeve, wherein the annular sleeve and the bottom plate are both made of photocatalytic net, that is, the photocatalytic cylinder 42 refers to a structure having a photocatalytic function, such as a photocatalytic net, is in a cylindrical shape. It is also possible to use a cylindrical bracket to support the photocatalytic net to form the photocatalytic cylinder 42.
In one embodiment, referring to
In one embodiment, a ratio of the inner diameter D1 of the air outlet end of the housing 21 to the outer diameter D2 of the wind rotor 22 is in a range of 1.2-1.6, that is, the inner diameter D1 of the air outlet end of the housing 21 is 1.2-1.6 times the outer diameter D2 of the wind rotor 22, which can not only guarantee the good aerodynamic performance of the wind rotor 22, where the wind rotor 22 can produce greater suction force at the same speed, but also can reduce the operating noise and keep the operation noise lower, so that the operating noise of the air purifier 100 can be reduced, and the purification efficiency of the air purifier 100 can be improved.
In one embodiment, the ratio of the inner diameter D1 of the air outlet end of the housing 21 to the outer diameter D2 of the wind rotor 22 is in the range of 1.3-1.5, that is, the inner diameter D1 of the air outlet end of the housing 21 is 1.3-1.5 times the outer diameter D2 of the wind rotor 22, which can better ensure the good aerodynamic performance of the wind rotor 22, and make the wind rotor 22 generate greater suction, reduce operating noise, and improve the purification efficiency of the air purifier 100.
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, an air inlet end of the housing 21 is provided with a support plate 211, and the support plate 211 is extended inwardly from the air inlet end of the housing 21. The support plate 211 is provided with an air inlet 210, and an end of the air intake guide ring 223 away from the baffle 222 is supported on the support plate 211, that is, an inner end of the air intake guide ring 223 is supported on the support plate 211 to facilitate the support of the air intake guide ring 223, thereby ensuring a smooth rotation of the wind rotor 22. The gap between the housing 21 and the air intake guide ring 223 can be reduced, thereby reducing air backflow and improving the aerodynamic performance.
In one embodiment, a convex ring 213 is protruded on the support plate 211, and the convex ring 213 is extended into the air intake guide ring 223, so that the air intake guide ring 223 can be positioned by the convex ring 213 to ensure a smooth rotation of the wind rotor 22. In addition, this structure ensures a U-shaped gap formed between the inner end of the air intake guide ring 223 and the convex ring 213 and the support plate 211, in this way, the U-shaped gap can increase the resistance of air backflow when the air flow back, thereby improving the aerodynamic performance of the fan 20.
In one embodiment, referring to
In one embodiment, the support plate 211 is provided with a fixing plate 216, and the LED module 41 is installed on the fixing plate 216 so as to be supported.
In one embodiment, referring to
In one embodiment, the housing 21 has a shrinking section 212 connected to the support plate 211, and the shrinking section 212 is arranged to shrink in a direction towards the air intake guide ring 223. In this way, the gap between the shrinking section 212 and the air intake guide ring 223 can be smaller, so as to increase the resistance of air backflow, thereby improving the aerodynamic performance of the fan 20.
In one embodiment, the shrinking section 212 has a first shrinking portion 2121 that is recessed toward the middle of the air intake guide ring 223, that is to say, the first shrinking portion 2121 is the part on the shrinking section 212 corresponding to the intake guide ring. In this way, the gap between the first shrinking portion 2121 and the air intake guide ring 223 can be smaller, and the resistance of air backflow in the fan 20 can be increased, thereby improving the aerodynamic performance of the fan 20.
In one embodiment, the shrinking section 212 has a second shrinking portion 2122 that is an end of the shrinking section 212 away from the support plate 211. The second shrinking portion 2122 shrinks inwardly, that is, the second shrinking portion 2122 is arranged to shrink in a direction towards the center position of the casing 10. In addition, the second shrinking portion 2122 is located at an end of the air intake guide ring 223 away from the support plate 211, so that the gap between the end of the air intake guide ring 223 away from the support plate 211 and the second shrinking portion 2122 can be smaller, the resistance of air backflow in the fan 20 can be increased, thereby improving the aerodynamic performance of the fan 20.
In one embodiment, as the shrinking section 212 is provided with the first shrinking portion 2121 and the second shrinking portion 2122, the gap between the shrinking section 212 and the air intake guide ring 223 is presented in an S-shape, which can further the resistance of air backflow in the fan 20 can be increased, thereby improving the aerodynamic performance of the fan 20.
In one embodiment, the end of the air intake guide ring 223 away from the support plate 211 has a convex edge 2231. The convex edge 2231 protrudes from the air intake guide ring 223 toward the support plate 211. In this way, on the one hand, the air intake guide ring 223 can be positioned through the convex edge 2231 with respect to the shrinking section 212, to ensure a smooth rotation of the wind rotor 22; on the other hand, the gap between the shrinking section 212 and the convex edge 2231 can be reduced, and the resistance of air backflow in the fan 20 can be increased, so as to improve the aerodynamic performance of the fan 20.
In one embodiment, referring to
In one embodiment, the support bar 215 is in a sheet shape, and the support bar 215 is in the shape of a flat sheet, and the thickness direction of the support bar 215 is arranged along the radial direction of the wind rotor 22, so that the air entering the wind rotor 22 can be rectified by the support bar 215, so as to better guide the air flow into the wind rotor 22 and improve the aerodynamic performance of the fan 20.
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In an embodiment, the diffuser 24 also includes a cover plate 26. The cover plate 26 covers an end of the inner ring plate 241 away from the mounting plate 25, so that the cover plate 26, the inner ring plate 241 and the mounting plate 25 enclose a cavity 201. The motor 23 is disposed in the cavity 201, and the output shaft 231 of the motor 23 is extended out of the cavity 201 and is connected to the baffle 222, so as to better install and protect the motor 23.
In one embodiment, the mounting plate 25 includes a flat plate portion 251 and an inclined portion 252, the inclined portion 252 is arranged around the flat plate portion 251, the flat plate portion 251 is connected to the inclined portion 252 from at its peripheral side, and the flat plate portion 251 is located in the middle of the mounting plate 25, thereby facilitating the support and installation of the motor 23. The inclined portion 252 is extended along the peripheral side of the flat plate portion 251 in the direction away from the wind rotor 22, and an edge of the inclined portion 252 is connected to the inner ring plate 241, so that a volume of the cavity 201 formed by the cover plate 26, the inner ring plate 241 and the mounting plate 25 can be increased to better accommodate the motor 23 and reduce the volume of the diffuser 24, thereby reducing the entire volume of the fan 20. it should be understood that the mounting plate 25 can also be arranged in a flat plate structure to facilitate processing and manufacturing.
In one embodiment, the inclined portion 252 is provided with a plurality of through holes 253 to facilitate heat dissipation
In one embodiment, referring to
In one embodiment, the casing 10 includes an upper casing 11 and a lower casing 12 mounted on the lower casing 12. The casing 10 is formed with the upper casing 11 and the lower casing 12, which not only facilitates processing and manufacture, but also facilitates the installation of various components in the casing 10.
In one embodiment, referring to
In one embodiment, the air purifier 100 also includes a support shell 52, the support shell 52 is installed on the top of the casing 10, and the panel 51 is installed on the support shell 52, so that the panel 51 is supported on the top of the casing 10 through the support shell 52. The panel 51 and the casing 10 are arranged with a gap so that air can flow out between the casing 10 and the panel 51.
In one embodiment, referring to
In one embodiment, the support shell 52 may be connected to the connection ring 112 to support the panel 51 on the top of the casing 10. It is understood that the panel 51 may also be installed on and supported by the connection ring 112.
In one embodiment, the support shell 52 is horn-shaped, and the diameter of a lower end of the support shell 52 is smaller than the diameter of an upper end of the support shell 52, so that when the purified air flows out from the air outlet 110, the support shell 52 can guide the air to diffuse around the peripheral side of the casing 10 to increase the area covered by the purified air.
In one embodiment, referring to
In one embodiment, the air guide shell 53 includes an annular section 531 and a contraction section 532. The annular section 531 is arranged extending along the axial direction of the wind rotor 22. One end of the annular section 531 is connected to the contraction section 532, and the other end of the annular section 531 is connected to the inner ring plate 241. The outer diameter of the connection ring 112 is smaller than the inner diameter of the inner ring plate 241, and the contraction section 532 is extended along an end of the annular section 531 away from the inner ring plate 241 to the connection ring 112, so that the space between the air guide shell 53 and the casing 10 gradually increases from the annular section 531 to the air outlet 110, so that the pressure can be better diffused, the airflow loss can be reduced, and the aerodynamic performance of the fan 20 and the purification efficiency of the air purifier 100 can be improved.
In one embodiment, the air guide shell 53 also includes a support plate 533. An edge of the support plate 533 is connected to the contraction section 532. The support plate 533 covers the connection ring 112, so as to better support the connection ring 112 and ensure good structural strength of the air guide shell 53.
In one embodiment, referring to
In one embodiment, the negative ion generator 61 is installed in the cavity 201 to ensure the negative ion generator 61. The negative ion emission needle is installed on the cover plate 26, then the air flow discharged by the fan 20 passes through the negative ion emission needle, so that the discharged air flow contains negative ions.
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, the purification plate 422 is honeycomb-like, that is, the purification plate 422 is provided with a number of openings 4221 so that the purification plate 422 is honeycomb-like. The use of the honeycomb-like purification plate 422 has less resistance to airflow, and more airflow can pass through the purification plate to improve the ability to remove harmful gases such as formaldehyde.
In one embodiment, the purification plate 422 is reticulate, that is, the purification plate 422 is provided with a plurality of openings 4221, so that the purification plate 422 is reticulate. The use of the reticulate purification plate 422 has low resistance to airflow, and more airflow can pass through the purification plate to improve the ability to remove harmful gases such as formaldehyde.
In one embodiment, the purification plate 422 may be made of activated carbon corrugated paper to form a reticulate structure so that harmful gases such as formaldehyde, benzene, TVOC and the like in the air can be removed.
In one embodiment, the purification plate 422 may be made of a honeycomb-like activated carbon to form a honeycomb-like or reticulate structure, so as to remove harmful gases such as formaldehyde, benzene, TVOC, etc. in the air.
In one embodiment, the purification plate 422 may be made of a honeycomb-like carbon-filled filter screen, that is, a honeycomb-like support plate is disposed between two layers of filter screens, and activated carbon particles are disposed in the holes of the honeycomb-like support plate to form a honeycomb-like or reticulate structure, so as to remove harmful gases such as formaldehyde, benzene, TVOC, etc. in the air.
In one embodiment, the purification plate 422 may be made of a honeycomb-like or reticulate substrate with a coating being sprayed on the surface that removes harmful gases in the air. The coating may be a manganese compound layer, a photocatalyst layer or a cold catalyst layer, etc., so that the purification plate 422 can remove harmful gases such as formaldehyde, benzene, and TVOC in the air.
The air purifier 100 of the embodiment of the present application has high air purification efficiency, low operating noise, long service life, convenient replacement of the filter 30, wide coverage area of purified air, and compact structure.
The above are only optional embodiments of the present application, which are not intended to limit the present application. Any modification, equivalent replacement and improvement made within the spirit and principle of this application shall be included in the protection scope of the present application.
Number | Date | Country | Kind |
---|---|---|---|
202122143780.3 | Sep 2021 | CN | national |