This invention relates to air relief valves, particularly those adapted for use with irrigation pipes.
In large irrigation pipes operating at low pressures, it is common for air to enter therein and become entrapped. This air may be present before the filling and remain trapped, or be present at a much lower volume in water of a higher pressure in the system and expand to a greater volume on entering the low pressure irrigation pipe. Obstructions such as a partially open gate valve may produce cavitations which tend to further expand the entrapped air when the pressure is lowered.
The air tends to accumulate in large elongated bubbles at points along the pipe which are at higher elevations than adjacent portions (so called local peaks). Since these air pockets cannot move along the pipe, the effective diameter of the pipe in the location thereof is reduced. This may result in turbulent flow of the water in the pipe, as well as in surging and water hammer. Damage or rupture of the pipe may result.
In order to deal with trapped air, it is known in the art to provide one or more of several types of valves and/or vents, such as air relief/vacuum relief valves, continuous acting air vents (with or without vacuum relief), and pressure relief valves. Such valves/vents are provided, for example, by McMaster-Carr, under the name Air-Release Valve.
According to first aspect of the present invention, there is provided an air relief valve comprising a base adapted for attachment to the wall of an irrigation pipe, a vent extending through the base from an interior side thereof, adapted to face the interior of the pipe to an exterior side thereof, adapted to face the exterior of the pipe, a water level sensor adapted to be disposed within the pipe at least during use of the vent, and a shutoff mechanism responsive to the water level sensor to open the vent, thereby allowing air to exit the pipe via the vent at least during use, and to close the vent to prevent the air from exiting the pipe via the vent at least during use. The vent has an inlet at the interior side thereof and an outlet at the exterior side thereof, and the shutoff mechanism is movable by the water level sensor between an opening position thereof wherein the inlet of the vent is open for the air from the pipe to pass via the outlet of the vent to the exterior of the pipe, and a closing position thereof wherein the inlet of the vent is closed.
The water level sensor may have two ends and may be pivotally connected at one end thereof to the base so as to pivot between a first, opening position in which the other end of the sensor is spaced from the wall of the pipe to a first distance, and a second, closing position in which the other end of the pipe is located at a second distance from said wall, which is smaller than said first distance. In this case it may be advantageous if the sensor is connected to the base in such orientation that its second end is located at a location along the pipe downstream of its first end. The valve may comprise an indicium to indicate the orientation at which it should be mounted to the wall of the pipe, to ensure above orientation of the sensor.
The water level sensor may be in the form of a floatation device adapted to float on water and to be movable between said first and second positions in consequence with the change of the level of water in the pipe.
According to one embodiment, the vent is in the form of a tube protruding from the base to the interior of the pipe and having a thin-walled portion, and the shutoff mechanism is constituted by the tube being bendable to allow air to exit the pipe via the tube any time except for when the tube is bent to prevent the air from exiting the pipe. In this case, the base may include a rigid tube support portion to support the thin-walled portion of the tube, which may comprise a stationary section, a pivoting section and a bending section therebetween, allowing the pivoting section to pivotally articulate relative to the stationary section, and thereby bend the tube in the area of said bending section, to bring it to said closing position.
If in this embodiment the water level sensor is in the form of a floatation device, such device may be attached to the pivoting section of the rigid tube support portion of the base to cause this part to pivot and bend the tube in the area of the said bending section, when the water in the pipe reaches a predetermined level.
According to another embodiment, the vent is in the form of a through-going bore formed in the base and the shutoff mechanism is in the form of a stopper in translational association with the water level sensor, i.e., it is movable by the water level sensor between said opening position in which the stopper is spaced from the inlet of the vent and said closing position in which stopper sealingly bears against the inlet of the vent. The stopper may be formed from a viscoelastic material. The shutoff mechanism may be mounted to the water level sensor or formed as part thereof.
According to a second aspect of the present invention, there is provided an air relief valve comprising a base adapted for attachment to the wall of the pipe, a vent extending through the base from an interior side thereof, adapted to face the interior of the pipe, to or beyond an exterior side thereof, adapted to face the exterior of the pipe, and a water level sensor, said vent being deformable responsive to the water level sensor, between an opening position allowing, at least during use, air to exit the pipe via the vent, and a closing position to prevent, at least during use, the air from exiting the pipe via the vent.
The vent may be in the form of a bendable tube to allow air to exit the pipe via the tube any time except for when the tube is bent to prevent the air from exiting the pipe.
In one embodiment, the tube may protrude from the base to the interior of the pipe and may have a thin-walled portion. In this case, the base may include a rigid tube support portion to support said thin-walled portion of the tube, which may comprise a stationary section, a pivoting section and a bending section therebetween, allowing the pivoting section to pivotally articulate relative to the stationary portion, and thereby bend the tube in the area of said bending section, to bring it to said closing position. If in this embodiment the water level sensor is in the form of a floatation device, such device may be attached to the pivoting section of the rigid tube support portion of the base to cause this part to pivot and bend the tube in the area of the said bending portion, when the water in the pipe reaches a predetermined level.
In another embodiment, the base may comprise a hollow chamber, with said tube disposed therein. The tube may be disposed in the chamber in a bent position and have a stationary tube section, a pivoting tube section and a bending tube section therebetween, the pivoting section being adapted to pivotally articulate relative to the stationary section by the deformation of the bending section. If in this embodiment the water level sensor is in the form of a floatation device, such device may be also disposed within the chamber to bear against the pivoting tube section, thereby causing the tube to bend when the water in the pipe reaches a predetermined level.
The water level sensor does not necessarily have to be in the form of a floatation device but may be in any other form capable of bending the tube.
According to a further aspect of the present invention, there is provided a direction indicator for use in a valve to allow proper orientation thereof inside an irrigation pipe.
According to a still further aspect of the present invention, there is provided an irrigation pipe comprising a float and an opening located in proximity thereto, the pipe being adapted for introduction into an irrigation main.
The irrigation main may be a flexible pipe.
The opening may be formed such that is passes through the float or in the pipe substantially adjacent thereto.
In order to understand the invention and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:
As better seen in
The valve further comprises a rigid tube support portion 11 supporting the intermediate section 5 of the vent tube 2, a base portion, generally indicated at 8, mounted on the outlet section 4 of the vent tube 2, and a float 34 mounted on the inlet portion 3 of the vent tube 2. The vent tube 2 together with the rigid tube support portion 4 may be produced by injection molding, with the base section 8 and the float 34 being molded over the respective inlet and outlet sections 3 and 4 thereof. The base section and the float are made of a material which is substantially non-absorbent and is less dense than water.
The base portion 8 comprises a flange 16, adapted for being pressed to the inner surface of the wall of the irrigation pipe, and a cylindrical end-piece 20 adapted to protrude from the outer surface of the wall, when the valve is installed therein and to be held by user's hand or tool during the installation, as will be explained in more detail later.
As best seen in
The rigid tube support portion 11 comprises a stationary section 12, a free section 14, and a bending section 15 therebetween in the form of a living hinge, allowing the free section 14 to be pivotally articulated relative to the stationary section 12 about an axis perpendicular to the longitudinal axis X of the valve. The stationary section 12 of the rigid supporting portion 11 accommodates the thick-walled portion 7 and a part 6′ of the thin-walled section 6 of the vent tube 2, and it merges with the base portion 8. The free section 14 of the rigid supporting portion 11 accommodates the thick-walled portion 9 and a part 6″ of the thin-walled section 6 of the vent tube 2, and it merges with the float 34. The bending section 15 of the rigid support portion 11 is formed with aperture 19 extending along the thin-walled portion 6 of the vent tube so that, when the free section 14 is articulated relative to the stationary section 12 thereof, the thin-walled section 6 may deform outwardly when bent in the vicinity of bend-area 17 wherein parts 6′ and 6″ merge.
Upon filling of the pipe, as seen in
It will be appreciated that the vent tube 2 is to be made of a material which can withstand such bending without rupture, such as from polypropylene or polyethylene.
During use of the pipe, it is normal for additional air to become trapped therein. As this occurs, the level of water in the vicinity of the valve 10 lowers, causing the free portion 14 thereof, and the float 34 carried thereby, to fall. The vent tube 2 opens, allowing excess air to escape. As the air escapes, the level of water rises, resealing the tube.
Thus, in operation, the float 34 with the free portion 14 constitutes a water level sensor 41 of the valve, which has a free distal end 43 and a proximal end 45 with which the sensor is pivotally connected to the stationary portion 12, the latter together with the base portion 8, constituting the valve's base 45. The water level sensor 41 thus pivots between a first, opening position in which the distal end 43 thereof is spaced from the wall 40 of the pipe 42 to a first distance d1, and a second, closing position in which the distal end 43 is located at a second distance d2 from the wall 40, which is smaller than the first distance d1.
In order to safeguard against the water preventing the free portion 14 from pivoting upward, the valve 10 may be installed such that the distal end 43 of its water level sensor 41 is downstream from its proximal end 45, as seen in
It will be appreciated that it is not sufficient that the water level sensor 41 be designed so that the buoyant force thereof when submerged in water is sufficient to raise itself, but the buoyant force must also sufficient to bend the vent tube 2, and keeping the distal end 43 of the water level sensor above the surface of the water.
The body 102 is adapted to be attached to the wall of a pipe. It comprises a vent 108 open to a key-receiving portion 110. As best seen in
The float 104 is adapted to float on water, and comprises a stopper 114 on an upper surface thereof. The stopper 114 is located such that when the float 104 is in a horizontal position against the bottom of the base 102 (see
In operation, as illustrated in
During use of the pipe, it is normal for additional air to become trapped therein. As this occurs, the level of water in the vicinity of the valve 100 lowers, causing the float 104 the fall. The vent 108 is opened, allowing excess air to escape. As the air escapes, the level of water rises, causing the float 104 to rise and recluse the vent 108.
In order to safeguard against the normal flow of water, and especially the in-rush of new water during filling of the pipe, from causing the float 104 from pivoting upward, the valve 100 may be installed such that the distal end 103 of the float 104 is located downstream from the proximal end thereof, as seen in
Among the advantages of the above examples is the possibility of being mounted on a lay-flat type pipe, having relatively thin walls, after having been deployed and still have a sensor to float within the pipe.
As seen in
The conduit 212 is open at a proximal end 214a thereof to the exterior of the valve 200, and at a distal end 214b thereof to the interior of the main chamber 208. The main chamber 208 is open at the bottom. Three legs 216 are provided there, protruding inwardly from the interior surface of the neck 206 (see
A water level sensor in the form of a ball 218, adapted to float on water, is provided within the main chamber 208. The ball 218 is of a diameter such that it cannot pass between the three legs 216. When the ball 218 rests in a neutral position on the legs 216, the hanging portion of the conduit 212 bears against it. Air is thus free to exit the valve by entering the conduit 212 at its distal end 214b, e.g., along the path indicated by arrow 220, and exiting the conduit, as indicated by arrow 222, from the proximal end 214a thereof.
As illustrated in
During use of the pipe, it is normal for additional air to become trapped therein. As this occurs, the level of water in the vicinity of the valve 200 lowers, causing the ball 218, and as a result the hanging portion of the conduit 212, to fall. The conduit 212 opens, allowing excess air to escape. As the air escapes, the level of water rises, causing the ball 218 to rise, raising the hanging portion of the conduit 212 until it closes itself.
Some of the advantages of the above examples may further be realized in a simplified arrangement, as illustrated in
During use, the float 62 keeps the opening 64 at or near the top of the level of the water within the irrigation main 66. As air accumulates within the irrigation main 66 in the vicinity of the pipe 60, it is released via the pipe and exits through the openings. When all of the air has been thus dispelled, water continues to flow through the pipe 60 to the openings.
Those skilled in the art to which this invention pertains will readily appreciate that numerous changes, variations and modifications can be made without departing from the scope of the invention mutatis mutandis.