Personal air samplers are battery powered and bodily worn devices that are used to assess a workers exposure to toxic dusts and gasses.
By way of example, U.S. Pat. No. 6,741,056, issued on May 25, 2004 and incorporated herein by reference in its entirety, describes a personal air sampler in which a constant flow of air is provided regardless of changes in the air flow path. This result is achieved by altering the pump speed as a function of the power taken by the pump. The characteristics of the pump are pre-calibrated to provide a constant that is used together with the square of the voltage appearing across the motor armature coils (applied voltage minus back Emf), which reflects the power currently used, to adjust the motor speed and thus provide a constant flow of air under changing conditions of resistance.
By way of further example, U.S. Pat. No. 4,292,574, issued on Sep. 29, 1981 and incorporated herein by reference in its entirety, describes a personal air sampler with an electric motor that is driven by intermittent full-power pulses. More particularly, a constant selected running speed of the electric motor, with a varying mechanical load, is achieved by intermittently pulsing the motor at full power and comparing the back EMF of the motor, between power pulses, with a selected speed voltage, to accordingly control application of the power pulses. A particular control circuit is therefore described which permits operation of a pocket-sized system, powered by a three cell battery, to achieve substantially constant speed, at normally varying loads, throughout a ten hour period, with back EMFs at selected values between 0.01 volt (motor barely turning) and 2.0 volts (high speed).
While these described personal air samplers work for their intended purpose, the following describes an improved personal air sampler having a high efficiency closed loop control system.
Generally, a battery powered, personal air sampler is described which uses a closed loop control circuit to adjust the power that is delivered to an internal pump such that a stable and accurate flow rate is maintained independent of changes in inlet pressure due to filter loading. The described personal air sampler thus provides improved efficiency to the entire electronic and flow pumping system which, in turn functions to optimize the available battery run time of the device.
More particularly, a personal air sampler is described that has a housing, the housing having an air inlet and an air outlet which defines an air flow passage. A pump is disposed in the air flow passage and functions to move air through the air flow passage at an air flow rate while a pressure sensing sub-system generates a signal indicative of the air flow rate. The sampling of the air flow rate may be performed continuously or at discrete, desired periods of time. A coreless DC motor drives the pump and a battery provides a voltage to the DC coreless motor. A regulator sub-system, having a switch and an inductor, is electrically coupled to and disposed between the battery and the coreless DC motor and a processing device is coupled to the regulator sub-system. A memory associated with the processing device has stored therein a look-up table for use in implementing a proportional-integrated-derivative closed loop air flow control process whereby the processing device is used to switch on and off the switch of the regulator sub-system as a function of the signal indicative of the air flow rate and data contained within the look-up table to thereby adjust the voltage that is provided from the battery to the coreless DC motor via the inductor in accordance with the proportional-integrated-derivative closed loop air flow control process whereupon a driving of the pump by the coreless DC motor is controlled for the purpose of having the air flow rate attain a target set point level.
A better understanding of the objects, advantages, features, properties and relationships of the described personal air sampler will be obtained from the following detailed description and accompanying drawing that set forth illustrative embodiments that are indicative of the various ways in which the principles expressed hereinafter may be employed.
For a better understanding of the personal air samplers described hereinafter, reference may be had to preferred embodiments shown in the following drawings in which:
With reference to the figures, exemplary personal air samplers are now described. Generally, the described personal air samplers are battery powered devices that use a closed loop control circuit to adjust the power that is delivered to an internal pump such that a stable and accurate flow rate is maintained independent of changes in inlet pressure due to filter loading. Furthermore, the described personal air samplers provide improved efficiency to the electronic drive and flow pumping system which, in turn functions to optimize the available battery run time and size of the device.
As illustrated in
As further illustrated in
In operation, for a specific flow rate, the target pressure value is determined using the lookup table as illustrated in
From the foregoing, it will be appreciated that the regulator sub-system 30 offers improved efficiency when stepping down the battery voltage to a lower level to drive the motor 1. As will also be appreciated, in the personal air sampling pump application the benefits of this increased efficiency are greatest at lower drive levels and midrange flow rates. For example, a 40% increase in the available run time has been demonstrated at a flow benchmark of 2 L/minute as compared to a system in which a conventional PWM drive is used using no additional inductance and lower switching frequencies.
It is to be understood that the foregoing describes a system in which the regulator sub-system 30 is arranged to be used in a “step down” manner, i.e., arranged for use in a system in which the voltage of the battery 20 is greater than the maximum battery voltage that is required to drive the motor 1. For example, the system described and illustrated in
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangement disclosed is meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4292574 | Sipin et al. | Sep 1981 | A |
4576054 | Lalin | Mar 1986 | A |
5163818 | Betsill et al. | Nov 1992 | A |
5520517 | Sipin | May 1996 | A |
5553508 | Dabberdt et al. | Sep 1996 | A |
5705902 | Merritt et al. | Jan 1998 | A |
6167766 | Dunn et al. | Jan 2001 | B1 |
6741056 | Hall | May 2004 | B1 |
7336045 | Clermonts | Feb 2008 | B2 |
7347112 | Kay | Mar 2008 | B2 |
Entry |
---|
ISA/US, International Search Report and Written Opinion issued on PCT application No. US16/27272, dated Jul. 6, 2016, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20160305415 A1 | Oct 2016 | US |