This application is a §371 of International PCT Application PCT/EP2011/002996, filed Jun. 17, 2011, which further claims the benefit of FR 1054837, filed Jun. 18, 2010, both of which are herein incorporated by reference in their entireties.
The present invention relates to an air separation plant and process operating by cryogenic distillation.
In an air separation plant comprising one or more series of air compressors and one or more cold boxes, the air compressors have fixed functions which do not vary in accordance with the operating modes of the plant. In particular, an air compressor compresses the air from atmospheric pressure up to a delivery pressure substantially the same as that of the distillation column having the highest pressure. A booster compressor compresses air from this delivery pressure of the air compressor to a delivery pressure defined by a combination of the pressure for vaporization of the oxygen and/or the liquid nitrogen and the quantity of liquid products to be produced.
FR-A-2895068 describes an air separation plant comprising two air compressors receiving air at a pressure substantially equal to atmospheric pressure, two air purification units and two cold boxes. Each compressor is connected to each of the purification units so as to send compressed air thereto, the purification units being each connected to two cold boxes. A first of the compressors is designed to produce air at a first pressure and send the air at the first pressure to a first purification unit and the first purification unit is connected to high-pressure air lines of a first cold box. A second compressor is designed to produce air at a second pressure, lower than the first pressure, and send the air at the second pressure to a second purification unit and the second purification unit is connected to medium-pressure air lines of the second cold box.
With this process it is not possible to continue operation of an air separation apparatus supplied with the purified high-pressure air when the only compressor supplying high-pressure air during normal operation and/or the only purification unit supplying purified high-pressure air during normal operation produces less air than expected or is not in working order.
An aim of the invention is to overcome the drawbacks of the known processes. In particular with the process according to the invention it is possible to:
According to an object of the invention an air separation plant is envisaged, said plant comprising at least two air compressors receiving air at substantially atmospheric pressure, at least two air purification units and one or more cold boxes, at least one compressor being connected to each of the purification units so as to send compressed air thereto, the purification units being connected to the cold box or boxes, a first compressor being designed to produce air at a first pressure and to send all the air at the first pressure to a first purification unit, the first purification unit being connected to one or more high-pressure air lines of the cold box or a first cold box, a second compressor being designed to produce air at a second pressure and to send all the air at the second pressure to a second purification unit, and the second purification unit being connected to one or more medium-pressure air lines of the cold box or first cold box, characterized in that it comprises a means for modifying the operation of the second compressor in order to increase the pressure of the air produced to a pressure higher than the second pressure, and preferably the same as the first pressure, the second pressure being lower than the first pressure, and the delivery side of the second compressor being connected to the high-pressure air line or lines of the cold box or first cold box through the second purification unit so as to send air thereto at the pressure higher than the second pressure.
Optionally:
According to another object of the invention, an air separation process is envisaged, said process using at least two air compressors supplied by air at atmospheric pressure, at least two air purification units and at least one air separation cold box wherein, according to a first operating mode, high-pressure air is sent from a first compressor to a first purification unit and from the first purification unit to the cold box or a first cold box via one or more high-pressure lines and medium-pressure air is sent from a second compressor to the second purification unit and from the second purification unit to the cold box or first cold box and characterized in that, according to a second operating mode, the second compressor is modified so that it produces high-pressure air instead of producing medium-pressure air, the high pressure being higher than the medium pressure, the high-pressure air of the second compressor being purified in the second purification unit and sent to the cold box or first cold box via the high-pressure line or lines, and optionally the first compressor is stopped and/or the first purification unit is stopped.
Optionally:
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, claims, and accompanying drawings. It is to be noted, however, that the drawings illustrate only several embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it can admit to other equally effective embodiments.
The invention will be described in greater detail with reference to the figures, in which
In
The compressor 1 is connected to an air purification unit 5A and the compressors 3B, 3C are connected to the purification units 5B, 5C in order to supply them with air. The cold boxes 25, 27 each contain the exchangers and the columns of an air separation apparatus. The apparatus is supplied in each case by a high-pressure air line and a medium-pressure air line. The terms “high pressure” and “medium pressure” mean simply that the high pressure is higher than the medium pressure, whereby the difference between the two may be relatively small. The first air compressor 1 produces air at between 3.5 bar and 10 bar absolute, preferably between 3.5 and 5 bar absolute, or else between 4 and 5 bar absolute, and the second compressor produces air at a variable pressure, during the first operating mode at a medium pressure between 2.5 and 5 bar absolute, preferably between 3 bar and 4 bar.
Thus a medium-pressure line 17 and a high-pressure line 21 supply the cold box 25 and a medium-pressure line 19 and a high-pressure line 23 supply the cold box 27. The air in the high-pressure lines must further perform the function of vaporizing the liquid oxygen under pressure of the air separation apparatus.
According to a first operating mode of the apparatus, corresponding for example to the nominal operating mode, the air 9A from the purification unit 5A circulates inside a line connected to the high-pressure line 21 and the high-pressure line 23 in order to supply the cold boxes 25, 27 with high-pressure air. The valve 13A is closed and the valve 11A is open.
The compressors 3B, 3C produce medium-pressure air which is purified in the purification units 5B, 5C. The purified medium-pressure air in the line 9B is sent via the open valve 13B to the medium-pressure lines 17, 19. The purified air in the line 9C is sent via the open valve 13C to the medium-pressure lines 17, 19 and thus the cold boxes 25, 27 are supplied with medium-pressure air, the valves 11B, 11C being closed.
According to a second operating mode of the apparatus, if the compressor 1 is not working, in order to continue producing high-pressure air, operation of the compressor 3B is modified so that it produces high-pressure air instead of producing medium-pressure air. This may be performed by modifying the speed of a steam turbine or a motor 28 driving it. The high-pressure air produced is purified in the purification unit 5B which can withstand processing of such a pressure. Since the valve 13B is closed and the valve 11B is open, the air from the line 9B passes into the high-pressure lines 17, 19 so as to supply the cold boxes 25, 27 with high-pressure air. Optionally a part of the high-pressure air may be returned at a reduced pressure to the medium-pressure air lines 17, 19 (if there is an excess of high-pressure air).
The compressor 3C continues to produce medium-pressure air and sends air to the purification unit 5C. The air purified in the line 9C is sent via the open valve 13C to the medium-pressure lines 17, 19 and thus the cold boxes 25, 27 are supplied with medium-pressure air, the valve 11C being closed.
It would also be possible, even if the figure does not show the required connections, in the event of breakdown of the compressor 1, to send the high-pressure air from the compressor 3B to the purification unit 5A and then to the lines 17, 19 via the valve 13A, the valve 11A being closed. In this case, a lower pressure variation tolerance for the purification unit is required.
The advantage of the arrangement shown in
The compressors 1, 3B, 3C may have axial stages. The plant may comprise means for recovering heat downstream of at least one of the compressors 1, 3B, 3C.
In the event of a reduction in the production output or breakdown of one of the compressors 3B, 3C, the air from the compressor 1 may be deviated via the valve 13A which reduces the pressure of the air from the high pressure to the medium pressure so as to send it to the lines 21, 23.
The second operating mode of the apparatus may correspond to a stoppage of the purification unit 5A associated with the compressor 1, a reduction in the flowrate produced by the compressor 1 or the purification unit 5A, or a reduction in the quantity of product(s) which must be produced by the cold boxes 25, 27. For example, in the event of a reduction in the flowrate of the pressurized oxygen to be vaporized together with the high-pressure air, advantageously the compressor 3B may be used instead of the compressor 1 in order to produce the smallest quantity of oxygen required.
Reduced to its simplest configuration,
According to the second operating mode, the compressor 1 would be stopped and the compressor 3B would produce high-pressure air, a part of which would be reduced in pressure back down to medium-pressure air via the valve 13B. Thus the compressor 3B would produce the two air pressures required for the cold box 25.
It should be apparent to those of ordinary skill in the art that an embodiment of the present invention can include other types of air separation apparatus instead of the apparatus discussed herein.
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the appended claims. The present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. Furthermore, if there is language referring to order, such as first and second, it should be understood in an exemplary sense and not in a limiting sense. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.
The singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.
Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such a range is expressed, it is to be understood that another embodiment is from the one particular value and/or to the other particular value, along with all combinations within said range.
Number | Date | Country | Kind |
---|---|---|---|
10 54837 | Jun 2010 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/002996 | 6/17/2011 | WO | 00 | 12/12/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/157431 | 12/22/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3731495 | Coveney | May 1973 | A |
3754406 | Allam | Aug 1973 | A |
4356013 | Linde | Oct 1982 | A |
4595405 | Agrawal | Jun 1986 | A |
5082482 | Darredeau | Jan 1992 | A |
5337570 | Prosser | Aug 1994 | A |
5496388 | Tellier | Mar 1996 | A |
5609041 | Rathbone et al. | Mar 1997 | A |
20020170313 | Zapp et al. | Nov 2002 | A1 |
20070186582 | Guillard | Aug 2007 | A1 |
20080223077 | Prosser et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
0717249 | Jun 1996 | EP |
0773416 | May 1997 | EP |
0992275 | Apr 2000 | EP |
1223396 | Jul 2002 | EP |
2853958 | Oct 2004 | FR |
2895068 | Jun 2007 | FR |
Entry |
---|
PCT/EP2011/002996; International Search Report and Written Opinion; Jul. 10, 2013. |
FR1054837; Search Report and Written Opinion; Mar. 1, 2011. |
Number | Date | Country | |
---|---|---|---|
20130086940 A1 | Apr 2013 | US |