The present invention relates to air shafts, and more particularly to an air shaft capable of not pinching the cores of rolls of paper, plastic film or any of other web materials neither in a process of winding same thereon nor in a process of unwinding same therefrom.
Conventionally, paper, plastic film, metal plate, cloth, or any of other web materials is supplied in large rolls wound on cylindrical cores. When the rolls are being wound or unwound, the cores are usually mounted on rotatable shafts. Inflated air shafts are typically used to lock the core to the rotatable shaft so that the rolls may rotate with the rotatable shaft as a unit.
Typically, an air shaft may be implemented as a button model, a serrated key model, a lug or strip model, or a plate model based on its appearance. Each of the above types of air shaft is adapted to insert into the cores of rolls of a specific material. However, these types of air shaft have some disadvantages. Thus, a manufacturer of the art devises a plate model air shaft as disclosed in Taiwanese Utility Model Patent No. 475,593 (“593” Patent). The “593” Patent is proposed as an improvement of the typical button model air shaft which has gripping members on its outer surface adapted to urge against an inner surface of the cores of rolls of material when the air shaft is inflated. However, there is an imbalance of force between portions of the cores of rolls of material being urged and portions of the cores of rolls of material being not urged. As a result, the cores of rolls of material tend to permanently deform or even twist. This is not desirable.
The “593” Patent as an improvement of the typical button model air shaft is a plate model air shaft as shown in
However, the above types of air shaft have disadvantages. In detail, material is wound on the roll 16 in use. The roll 16 is discarded after unwinding the material from the roll 16. This is a waste in view of environmental protection. Also, manufacturers of the roll 16 do not have the desire to recycle rolls 16 since it can incur a great cost. Further, the plate model air shaft cannot directly wind a web material thereon due to the following reasons.
Firstly, the plate model air shaft can maintain its circumference in use. However, there is a gap “s” between any two adjacent outer plates 13 of the plate model air shaft. Thus, portions of a web material may be pinched by the gaps “s” when it is wound on an outer surface of the outer plates 13.
Secondly, the gaps “s” may decrease after deflating the bladder 14. As such, portions of a web material may be pinched by the gaps “s”. As a result, it is impossible of unwinding the material from the plate model air shaft.
Thus, it is desirable to provide a novel air shaft capable of not pinching the cores of rolls 16 of a web material neither in a process of winding same thereon nor in a process of unwinding same therefrom, being environmental friendliness, and without requiring a manufacturer of the roll 16 to recycle same after use.
After considerable research and experimentation, an air shaft according to the present invention has been devised so as to overcome the above drawbacks of the prior art.
It is an object of the present invention to provide an air shaft comprising a hollow cylinder, and a plurality of curved members provided on an outer surface of the hollow cylinder and between both ends thereof. The curved members are adapted to move radially relative to the hollow cylinder. The curved members are spaced each other with a gap formed between any two adjacent ones of the curved members. As such, no continuous straight gaps are formed on an outer surface of the hollow cylinder while pushing the curved members. By utilizing the present invention, a web material can be wound on the air shaft directly without the need of mounting a roll on an outer surface of the air shaft, thereby eliminating the drawbacks of the prior art air shaft.
The above and other objects, features and advantages of the present invention will become apparent from the following detailed description taken with the accompanying drawings.
Referring to
Referring to
In view of the above, it is clear that no continuous gaps are formed on an outer surface of the air shaft. Thus, a web material is adapted to wind on the air shaft after inflating the bladder 3. Also, portions of the material will not be pinched by gaps as contrary to that experienced by the prior art outer plates 13. Further, the material will not be pinched by the curved members 5 while deflating the bladder 3 of the air shaft. This eliminates the need of mounting a roll on the outer surface of the air shaft prior to winding the material. As a result, the prior art drawbacks are eliminated. In one embodiment of the invention, each of the movable members 4 comprises a curved inner plate 40 and a sliding member 42 extending outwardly radially from the inner plate 40. The inner plates 40 are provided between two ends of the bladder 3. Each of the inner plates 40 is spaced from a corresponding curved member 5 and lines up therewith radially. One end of the sliding member 42 is formed with the inner plate 40 facing an inner surface of the hollow cylinder 2 and the other end thereof extends through the hollow cylinder 2 to secure to the corresponding curved member 5. A circumferential gap is formed between the inner plates 40 and the hollow cylinder 2 and the curved members 5 overlay the outer surface of the hollow cylinder 2 prior to inflating the bladder 3. In comparison, the inner plates 40 are pushed radially toward a position proximate the inner surface of the hollow cylinder 2 with a circumferential gap formed between the hollow cylinder 2 and the curved members 5 in response to inflating the bladder 3.
In another embodiment of the invention, each of the movable members 4 comprises a curved inner plate 40 and a sliding member 42 extending outwardly radially from the inner plate 40. The inner plates 40 are provided airtight in the bladder 3 and between two ends thereof. Each of the inner plates 40 is spaced from a corresponding curved member 5 and lines up therewith radially. One end of the sliding member 42 is formed airtight in the inner plate 40 facing an inner surface of the bladder 3 and the other end thereof extends through the bladder 3 and the hollow cylinder 2 to secure to the corresponding curved member 5. A circumferential gap is formed between the inner plates 40 and an inner surface of the hollow cylinder 2 and the curved members 5 overlay the outer surface of the hollow cylinder 2 prior to inflating the bladder 3. In comparison, the inner plates 40 are pushed radially toward a position proximate the inner surface of the hollow cylinder 2 with a circumferential gap formed between the hollow cylinder 2 and the curved members 5 in response to inflating the bladder 3.
Referring to
In view of the above, the first projections 50 are adapted to snugly fit into the second slots 56. Also, the second projections 54 are adapted to snugly fit into the first slots 52. That is, no continuous straight gaps are formed by the curved members 5 prior to pushing the curved members 5. Thus, portions of the material will not be pinched by gaps in the winding process of the material. Also, the material will not be pinched by the curved members 5 while deflating the bladder 3 in the unwinding process of the material. As a result, the prior art drawbacks are eliminated.
While the invention herein disclosed has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3206135 | Uncapher | Sep 1965 | A |
3391878 | Naccara | Jul 1968 | A |
4229014 | Crowe | Oct 1980 | A |
4461430 | Lever | Jul 1984 | A |
5904315 | McInerney | May 1999 | A |
6065715 | Andersson | May 2000 | A |
Number | Date | Country | |
---|---|---|---|
20080042005 A1 | Feb 2008 | US |