This application claims priority to Japanese Patent Application No. 2021-183359 filed in Japan on Nov. 10, 2021. The entire disclosure of Japanese Patent Application No. 2021-183359 is hereby incorporated herein by reference.
This invention generally relates to an air supply device. More specifically, this invention relates to an air supply device provided with a flow path switching unit.
Generally, an air supply device is equipped with a flow path switching unit (see, for example, Japanese Laid-Open Patent Application Publication No. 2000-1977 (Patent Literature 1)).
The above-mentioned Patent Literature 1 discloses a device equipped with an air pump and a controller. In Patent Literature 1, it is configured such that a rotary valve housed in the controller is rotated to supply air from the air pump to an air mattress or exhaust air from the air mattress. In Patent Literature 1, a groove which serves as a flow path when supplying air is formed on the inner circumference of the rotary valve, and a groove which serves as a flow path when exhausting air is formed on the outer circumference of the rotary valve.
However, when a plurality of grooves are provided in a flow path switching unit (e.g., a rotary valve), as in the above-mentioned Patent Literature 1, there is a problem that the flow path switching unit becomes larger and the air supply device becomes larger because the grooves are provided on the outer circumference.
One object of this disclosure is to provide an air supply device capable of suppressing enlargement of the flow path switching unit.
In view of the state of the known technology, an air supply device according to an aspect of this disclosure comprises an enclosure, a pump, and a flow path switching unit. The enclosure has a sealed interior space for storing air therein. The pump is provided outside the enclosure. The pump is configured to supply air to the interior space of the enclosure. The flow path switching unit including a pedestal part mounted inside the enclosure, a rotating part rotatably mounted on the pedestal part, the rotating part having an enclosure interior space communication portion and a groove portion, and a drive unit configured to rotate the rotating part. The enclosure includes an air supply port for supplying air from the pump to the interior space of the enclosure, an air discharge port for discharging air from the groove portion of the rotating part, and at least one object connection port for supplying air to or exhausting air from at least one object. The pedestal part includes at least one first hole that is communicated to the at least one object connection port, and a second hole that is communicated to the air discharge port. The enclosure interior space communication portion is communicated to the air supply port through the interior space of the enclosure. The groove portion is separated from the enclosure interior space communication portion.
Referring now to the attached drawings which form a part of this original disclosure:
Selected embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
First, with reference to
As shown in
As shown in
The enclosure 1 made of a resin. The enclosure 1 is, for example, a box of a rectangular or cubic shape. The enclosure 1 has a sealed interior space 1a (see
The enclosure 1 enables air to be stored in the interior space 1a (see
As shown in
The air supply port 11 is a hole for supplying air from the pump 2 into the interior space 1a of the enclosure 1. A first pipe 30a is connected to the air supply port 11 so as not to form a gap to communicate an air outlet port of the pump 2 and the air supply port 11 (see
The air discharge port 12 is a hole for discharging air. A second pipe 30b is connected to the air discharge port 12 so as not to form a gap to discharge air outside the enclosure 1 without using the pump 2 (natural exhaust) (see
The object connection ports 13 are holes for supplying air to the bag-shaped members 10 or exhausting air from the bag-shaped members 10. Third pipes 30c are connected to the object connection ports 13, respectively, so as not to form a gap to communicate the bag-shaped members 10 and the object connection ports 13 (see
As shown in
As shown in
As shown in
When viewed from the Z1 side to the Z2 side, the first holes 31a are provided at the same positions as the object connection ports 13 (see
When viewed from the Z1 side to the Z2 side, the second hole 31b is provided at the same position as the air discharge port 12 (see
As shown in
The rotating part 32 is made of resin. The rotating part 32 has a circular shape when viewed from the Z2 side to the Z1 side. The rotating part 32 approximately has the same size as the pedestal part 31. The rotating part 32 switches between an air exhaust state, an air supply state, and a maintained state by rotation. The maintained state is a state in which air supply and exhaust is stopped and an inflated state or a deflated state of the bag-shaped members 10 is maintained. The direction of rotation when switching between the air exhaust state, the air supply state, and the maintained state may be the same or different. The rotating part 32 has an enclosure interior space communication portion 32a and a groove portion 32b. The enclosure interior space communication portion 32a and the groove portion 32b open toward the pedestal part 31 (the Z2 side), respectively, and form an air flow path. Specifically, the first holes 31a and the second hole 31b provided in the pedestal part 31 and the enclosure interior space communication portion 32a and the groove portion 32b of the rotating part 32 form a flow path. The portion of the rotating part 32 forming the enclosure interior space communication portion 32a and the groove portion 32b is hereinafter referred to as a wall portion 32f.
The enclosure interior space communication portion 32a is provided on an outer portion of the rotating part 32. The enclosure interior space communication portion 32a is communicated to the air supply port 11 through the interior space 1a of the enclosure 11. Specifically, the enclosure interior space communication portion 32a opens toward the pedestal part 31 and the enclosure 1 (see
As shown in
When exhausting air, the rotating part 32 rotates so that the portion of the enclosure interior space communication portion 32a that opens toward the pedestal part 31 (the Z2 side) is not communicated to any one of the first holes 31a and the second hole 31b. On the other hand, a portion of the groove portion 32b of the rotating part 32 that opens toward the pedestal part 31 (the Z2 side) is communicated to the first hole 31a and the second hole 31b provided in the pedestal part 31 to form a flow path. With this configuration, a flow path is formed between the first hole 31a and the second hole 31b to discharge air from the bag-shaped member 10 to the outside. The rotating part 32 selectively communicates one of the first holes 31a to the groove portion 32b depending on the rotational position.
During the maintained state, the rotating part 32 rotates so that the portion of the enclosure interior space communication portion 32a that opens toward the pedestal part 31 (the Z2 side) is not communicated to the first holes 31a provided in the pedestal part 31. In other words, the first holes 31a are blocked and air is not supplied to the bag-shaped members 10 nor exhausted from the bag-shaped members 10.
As shown in
As shown in
When exhausting air, the protruding portion 32d rotates so as to be communicated to the first hole 31a. As a result, the first hole 31a and the second hole 31b are communicated. The rotating part 32 selectively communicates one of the first holes 31a to the second hole 31b depending on the rotational position.
In the maintained state, the protruding portion 32d rotates so as not to be communicated to the first holes 31a. Thereby, the first holes 31a are blocked by the wall portion 32f, and the first holes 31a are not communicated to the second hole 31b. As a result, air is neither supplied to nor exhausted from the bag-shaped members 10.
As shown in
As shown in
As shown in
As shown in
The enclosure 1, the pump 2, the control unit 4, and the pressure sensors 6 are arranged inside the main body. The main body 5 is, for example, a box made of resin. The main body 5 is also provided with a power supply (not shown) for driving the pump 2 and the flow path switching unit 3. Also, the power supply supplies electric power to the control unit 4, the pressure sensors 6 and the phase detection unit 9, as needed and/or desired.
The pressure sensors 6 measure the pressure of air supplied to the interior space 1a of the enclosure 1 or exhausted from the interior space 1a of the enclosure 1. The pressure sensors 6 are provided to the first pipe 30a (see
(Arrangement of Rotating Part when Supplying Air)
The arrangement of the rotating part 32 when supplying air will be described based on
The air drawn into the pump 2 is supplied from the pump 2 to the interior space 1a of the enclosure 1 through the air supply port 11. The air supplied to the interior space 1a of the enclosure 1 is supplied to the first hole 31a (the object connection port 13) through the enclosure interior space communication portion 32a. With this configuration, the air can be supplied to the bag-shaped member 10.
(Arrangement of Rotating Part when Exhausting Air)
The arrangement of the rotating part 32 when exhausting air will be described based on
As shown in
(Control when Supplying Air)
The control of the control unit 4 when supplying air will be described based on
In step S2, the control unit 4 stops the pump 2. In step S3, the control unit 4 controls the drive unit 8 to rotate the rotating part 32 at a predetermined angle or at a predetermined interval by driving the motor 8a of the drive unit 8. The predetermined angle of the rotating part 32 is set in accordance with the interval at which the first holes 31a are arranged by using a position at which the first detection portion 91a and the second detection portion 91b both detect light as the initial position (i.e., 0 degrees). The initial position is also a position in which air supply and exhaust to all the bag-shaped members 10 are also stopped. When the rotating part 32 is located at the initial position, the control unit 4 rotates the rotating part 32 to the predetermined angle. Specifically, the control unit 4 rotates the rotating part 32 until the second detection portion 91b detects light a predetermined number of times corresponding to the predetermined angle. When the rotating part 32 has been rotated from the initial position (e.g., when air is being supplied to other bag-shaped member 10), the control unit 4 rotates the rotating part 32 by an angular difference obtained by subtracting a rotational angle that has already been rotated from an angle between the initial position and a position corresponding to the target bag-shaped member 10. Specifically, the control unit 4 controls the drive unit 8 to rotate the rotating part 32 until the second detection portion 91b detects light a predetermined number of times corresponding to the angular difference.
In step S4, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 32 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 32 is the predetermined angle, or in other words, if the second detection portion 91b detects light the predetermined number of times, then it proceeds to step S5. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S4 is repeated until the predetermined angle is reached (until light is detected the predetermined number of times).
In step S5, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 32.
In step S6, the control unit 4 drives the pump 2 to supply air to the bag-shaped member 10. In step S7, the control unit 4 changes the control depending on whether or not the pressure detected by the pressure sensor 6 provided to the first pipe 30a is more than or equal to the predetermined value. If it is more than or equal to the predetermined value, then it proceeds to step S8 and the control unit 4 stops the pump 2. If it is less than the predetermined value, then step S7 is repeated until it becomes more than or equal to the predetermined value.
After stopping the pump 2 in step S8, in step S9, the control unit 4 controls the drive unit 8 to rotate the rotating part 32 to the position for the maintained state. In step S10, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 32 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 32 is the predetermined angle, then it proceeds to step S11. A case in which the rotational angle of the rotating part 32 is the predetermined angle means a case in which the second detection portion 91b detects light the predetermined number of times. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S10 is repeated until the predetermined angle is reached (until light is detected the predetermined number of times). In step S11, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 32. With this configuration, the bag-shaped member 10 can maintain the inflated state.
(Control when Exhausting Air)
The control of the control unit 4 when exhausting air will be described based on
In step S22, the control unit 4 stops the pump 2. In step S23, the control unit 4 controls the drive unit 8 to rotate the rotating part 32 at a predetermined angle or at a predetermined interval by driving the motor 8a of the drive unit 8. The predetermined angle of the rotating part 32 is set in accordance with the interval at which the first holes 31a are arranged by using a position at which the first detection portion 91a and the second detection portion 91b both detect light as the initial position (i.e., 0 degrees). The initial position is also a position in which air supply and exhaust to all the bag-shaped members 10 are also stopped. When the rotating part 32 is located at the initial position, the control unit 4 rotates the rotating part 32 to the predetermined angle. Specifically, the control unit 4 rotates the rotating part 32 until the second detection portion 91b detects light a predetermined number of times corresponding to the predetermined angle. When the rotating part 32 has been rotated from the initial position (e.g., when air is being exhausted from other bag-shaped member 10), the control unit 4 rotates the rotating part 32 by an angular difference obtained by subtracting a rotational angle that has already been rotated from an angle between the initial position and a position corresponding to the target bag-shaped member 10. Specifically, the control unit 4 controls the drive unit 8 to rotate the rotating part 32 until the second detection portion 91b detects light a predetermined number of times corresponding to the angular difference.
In step S24, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 32 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 32 is the predetermined angle, or in other words, if the second detection portion 91b detects light the predetermined number of times, then it proceeds to step S25. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S24 is repeated until the predetermined angle is reached (until light is detected the predetermined number of times).
In step S25, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 32.
In step S27, the control unit 4 changes the control depending on whether or not the pressure detected by the pressure sensor 6 provided to the second pipe 30b is less than the predetermined value. If it is less than the predetermined value, then it proceeds to step S29. If it is more than or equal to the predetermined value, then step S27 is repeated until it becomes less than the predetermined value. In the illustrated embodiment, the drive of the pump 2 in step S26 and the stop of the pump 2 in step S28 shown in
In step S29, the control unit 4 controls the drive unit 8 to rotate the rotating part 32 to the position for the maintained state. In step S30, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 32 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 32 is the predetermined angle, or in other words, if the second detection portion 91b detects light the predetermined number of times, then it proceeds to step S31. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S30 is repeated until the predetermined angle is reached (until the second detection portion 91b detects light the predetermined number of times). In step S31, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 32. With this configuration, the bag-shaped member 10 can maintain the deflated state.
In the first embodiment, the following effects can be obtained.
In the first embodiment, as described above, the air supply device 100 comprises the enclosure 1, the pump 2, and the flow path switching unit 3. The enclosure 1 has the sealed interior space 1a for storing air therein. The pump 2 is provided outside the enclosure 1. The pump 2 is configured to supply air to the interior space 1a of the enclosure 1. The flow path switching unit 3 includes the pedestal part 31 mounted inside the enclosure 1, the rotating part 32 rotatably mounted on the pedestal part 31, the rotating part 32 having the enclosure interior space communication portion 32a and the groove portion 32b, and the drive unit 8 configured to rotate the rotating part 32. The enclosure 1 includes the air supply port 11 for supplying air supplied from the pump 2 to the interior space 1a of the enclosure 1, the air discharge port 12 for discharging air from the groove portion 32b of the rotating part 32, and the object connection ports 13 for supplying air to or exhausting air from the bag-shaped members 10. The pedestal part 31 includes the first holes 31a that are communicated to the object connection ports 13, and the second hole 31b that is communicated to the air discharge port 12. The enclosure interior space communication portion 32a is communicated to the air supply port 11 through the interior space 1a of the enclosure 1. The groove portion 32b is separated from the enclosure interior space communication portion 32a.
The enclosure interior space communication portion 32a includes a notch or a through hole that is provided on the outer portion of the rotating part 32. The notch or the through hole opens toward the pedestal part 31 and the enclosure 1 so as to be communicated to the air supply port 11 through the interior space 1a of the enclosure 1. The groove portion 32b opens toward the pedestal part 31 so as not to be directly communicated to the enclosure interior space communication portion 32a.
With this configuration, the rotating part 32 includes the enclosure interior space communication portion 32a on the outer portion of the rotating part 32. Therefore, the sealed interior space 1a of the enclosure 1 can be used as a flow path for supplying air or exhausting air, and thus there is no need to provide a groove for forming a flow path in an outer circumference of the rotating part 32. With this configuration, enlargement of the flow path switching unit 3 can be suppressed. As a result, enlargement of the air supply device 100 can be suppressed.
In the first embodiment, as described above, the air supply device further comprises the control unit 4 configured to control the drive unit 8 to rotate the rotating part 32 to the position at which the position of one of the first holes 31a and the position of the enclosure interior space communication portion 32a coincide to each other when supplying air to one of the bag-shaped members 10, and the control unit 4 being configured to control the drive unit 8 to rotate the rotating part 32 to the position at which the one of the first holes 31a and the second hole 31b are communicated to each other through the groove portion 32b when exhausting air from the one of the bag-shaped members 10. With this configuration, when supplying air to the one of the bag-shaped members 10, the enclosure interior space communication portion 32a and the one of the first holes 31a are communicated to each other and a flow path is formed from the interior space 1a of the enclosure 1 to the one of the bag-shaped members 10. Thus, air inside the enclosure 1 can be supplied to the one of the bag-shaped members 10. Also, when exhausting air from the one of the bag-shaped members 10, the one of the first holes 31a and the second hole 31b are communicated to each other and a flow path is formed from the one of the bag-shaped members 10 to the air discharge port 12. Thus, the air can be exhausted from the one of the bag-shaped members 10.
In the first embodiment, as described above, the control unit 4 is configured to switch the bag-shaped members 10 for supplying and exhausting air by rotating the rotating part 32 at the predetermined angle or at the predetermined interval. With this configuration, switching of the bag-shaped members 10 can be easily performed by setting the predetermined angle or the predetermined interval in accordance with the positions of the first holes 31a and the second hole 31b.
In the first embodiment, as described above, the air supply device 100 further comprises the pressure sensors 6 for measuring the pressure of air supplied to the interior space 1a of the enclosure 1 and exhausted from the interior space 1a of the enclosure 1. When supplying air to the one of the bag-shaped members 10, the control unit 4 is configured to control the drive unit 8 to rotate the rotating part 32 to the position at which no flow path is formed between the first holes 31a and the second hole 31b while the pressure detected by one of the pressure sensors 6 is higher than or equal to the predetermined value. With this configuration, the control unit 4 can acquire that air has been sufficiently supplied to the one of the bag-shaped members 10 based on the fact that air pressure in the one of the bag-shaped members 10 in a full air state has become more than or equal to the predetermined value. In addition, when the pressure detected by the one of the pressure sensors 6 is more than or equal to the predetermined value, no flow path is formed between the first holes 31a and the second hole 31b. Thus, no flow path is formed from the one of the bag-shaped members 10 to the air discharge port 12, and it is possible to prevent that air is discharged from the one of the bag-shaped members 10.
In the first embodiment, as described above, when exhausting air from the one of the bag-shaped members 10, the control unit 4 is configured to control the drive unit 8 to rotate the rotating part 32 to the position at which no flow path is formed between the first holes 31a and the second hole 31b while the pressure detected by the other one of the pressure sensors 6 is less than the predetermined value. With this configuration, by setting the predetermined value to an air pressure in the one of the bag-shaped members 10 in a sufficiently exhausted state, it is possible for the control unit 4 to acquire that air has been sufficiently exhausted from the one of the bag-shaped members 10. Also, no flow path is formed between the first holes 31a and the second hole 31b while the pressure is less than the predetermined value. Thus, no flow path is formed from the one of the bag-shaped members 10 to the air discharge port 12, and it is possible to prevent that air is excessively discharged from the one of the bag-shaped members 10.
In the first embodiment, as described above, the control unit 4 is configured to stop the drive of the pump 2 when rotating the rotating part 32. With this configuration, for example, when supplying air to the one of the bag-shaped members 10 by communicating the one of the first holes 31a to the enclosure interior space communication portion 32, it is possible to prevent that air supplied to the interior space 1a of the enclosure 1 is supplied by the pump 2 to other bag-shaped member 10 by communicating other first hole 31a to the enclosure interior space communication portion 32a during rotation of the rotating part 32.
In the first embodiment, as described above, the rotating part 32 includes the gear portion 32e formed on the outer circumferential surface of the rotating part 32, and the control unit 4 is configured to control the drive unit 8 to rotate the rotating part 32 in a state in which the drive unit 8 and the gear portion 32e are engaged. With this configuration, the rotating part 32 can function as a reduction gear by varying the number of teeth between the drive unit 8 and the gear portion 32e.
In the first embodiment, as described above, when viewed from the pedestal part 31 side, the enclosure interior space communication portion 32a has an elliptical shape inwardly depressed. The groove portion 32b has the circular portion 32c that is communicated to the second hole 31b, and the protruding portion 32d that is selectively communicated to the first holes 31a and that outwardly protrudes from the circular portion 32c. With this configuration, the outer circumferences of the enclosure interior space communication portion 32a and the groove portion 32b can be aligned with the outer circumferences of the first hole 31a and the second hole 31b without misalignment. Thus, it is possible to prevent supplying air to the bag-shaped member 10 or exhausting air from the bag-shaped member 10 in a state in which the first hole 31a and the second hole 31b are partially blocked by the rotating part 32.
Referring to
As shown in
The external air supply and exhaust ports 14 are holes for supplying air from the outside of the enclosure 1 to the interior space 1a of the enclosure 1 or for exhausting air from the interior space 1a of the enclosure 1 to the outside of the enclosure. Fourth pipes 30d (see
As shown in
As shown in
When viewed from the Z1 side to the Z2 side, the third holes 31c are provided at the same positions as the external air supply and exhaust ports 14 (see
As shown in
When exhausting air, the rotating part 32 rotates so that the portion of the enclosure interior space communication portion 32a that opens toward the pedestal part 31 (the Z2 side) is communicated to one of the third holes 31c provided in the pedestal part 31, and a flow path is formed between the third hole 31c and the air supply port 11. When exhausting air, the portion of the enclosure interior space communication portion 32a that opens toward the pedestal part 31 (the Z2 side) is not directly communicated to the first holes 31a. At this time, one of the first holes 31a is located in the groove portion 32b that is separated from the enclosure interior space communication portion 32a, and other first holes 31a are blocked by the wall portion 32f of the rotating part 32. The rotating part 32 selectively communicates one of the third holes 31c to the enclosure interior space communication portion 32a depending on the rotational position.
During the maintained state, the rotating part 32 rotates so that the portion of the enclosure interior space communication portion 32a that opens toward the pedestal part 31 (the Z2 side) is not communicated to the first holes 31a and the third holes 31c provided in the pedestal part 31. The first holes 31a and the third holes 31c are blocked by the wall portion 32f, and air is neither supplied to the bag-shaped members 10 nor exhausted from the bag-shaped members 10.
As shown in
When exhausting air, the protruding portion 32d rotates so as to be communicated to one of the first holes 31a. As a result, the first hole 31a and the second hole 31b are communicated. At this time, the third holes 31c are not directly communicated to the protruding portion 32d. One of the third holes 31c is located in the enclosure interior space communication portion 32a that is separated from the groove portion 32b, and other third holes 31c are blocked by the wall portion 32f. Thus, the third holes 31c and the second hole 31b are not directly communicated. The rotating part 32 selectively communicates one of the first holes 31a and the second hole 31b depending on the rotational position.
During the maintained state, the protruding portion 32d rotates so as not to be communicated to the first holes 31a and the third holes 31c. The first holes 31a and the third holes 31c are blocked by the wall portion 32f, and the first holes 31a and the third holes 31c are not communicated to the second hole 31b. As a result, air is neither supplied to the bag-shaped members 10 nor exhausted from the bag-shaped members 10.
As shown in
(Arrangement of Rotating Part when Supplying Air)
The arrangement of the rotating part 32 when supplying air will be described based on
The air drawn from the outside by the pump 2 is supplied to the groove portion 32b through the external air supply and exhaust port 14. The air passing through the groove portion 32b is drawn into the pump 2 through the air discharge port 12. The air drawn into the pump 2 is supplied from the pump 2 to the interior space 1a of the enclosure 1 through the air supply port 11. The air supplied to the interior space 1a of the enclosure 1 is supplied to the object connection port 13 through the enclosure interior space communication portion 32a, and the air is supplied to the bag-shaped member 10.
The control of the control unit 4 when supplying air is basically identical to the control shown in
(Arrangement of Rotating Part when Exhausting Air)
The arrangement of the rotating part 32 when exhausting air will be described based on
The air is drawn from the bag-shaped member 10 by the pump 2, and the air flows from the bag-shaped member 10 to the object connection port 13. Then, the air flows from the object connection port 13 to the groove portion 32b. The air flowing into the groove portion 32b is drawn into the pump 2 through the air discharge port 12 that is communicated to the groove portion 32b. In other words, the air in the groove portion 32b is discharged by the air discharge port 12. The air drawn into the pump 2 is supplied to the interior space 11a of the enclosure 1 via the air supply port 11. Then, the air flows from the interior space 1a of the enclosure 1 to the external air supply and exhaust port 14 through the enclosure interior space communication portion 32a, and the air is discharged to the outside.
The control of the control unit 4 when exhausting air is basically identical to the control shown in
As shown in
Other configurations of the air supply device 200 according to the second embodiment are the same as those of the air supply device 100 according to the first embodiment described above.
In the second embodiment, the following effects can be obtained.
In the second embodiment, as described above, the air supply device 200 comprises the enclosure 1, the pump 2, and the flow path switching unit 3. The enclosure 1 has the sealed interior space 1a for storing air therein. The pump 2 is provided outside the enclosure 1. The pump 2 is configured to supply air to the interior space 1a of the enclosure 1. The flow path switching unit 3 includes the pedestal part 31 mounted inside the enclosure 1, the rotating part 32 rotatably mounted on the pedestal part 31, the rotating part 32 having the enclosure interior space communication portion 32a and the groove portion 32b, and the drive unit 8 configured to rotate the rotating part 32. The enclosure 1 includes the air supply port 11 for supplying air supplied from the pump 2 to the interior space 1a of the enclosure 1, the air discharge port 12 for discharging air from the groove portion 32b of the rotating part 32, and the object connection ports 13 for supplying air to or exhausting air from the bag-shaped members 10. The pedestal part 31 includes the first holes 31a that are communicated to the object connection ports 13, and the second hole 31b that is communicated to the air discharge port 12. The enclosure interior space communication portion 32a is communicated to the air supply port 11 through the interior space 1a of the enclosure 1. The groove portion 32b is separated from the enclosure interior space communication portion 32a.
The enclosure interior space communication portion 32a includes a notch or a through hole that is provided on the outer portion of the rotating part 32. The notch or the through hole opens toward the pedestal part 31 and the enclosure 1 so as to be communicated to the air supply port 11 through the interior space 1a of the enclosure 1. The groove portion 32b opens toward the pedestal part 31 so as not to be directly communicated to the enclosure interior space communication portion 32a.
With this configuration, the rotating part 32 includes the enclosure interior space communication portion 32a on the outer portion of the rotating part 32. Therefore, the sealed interior space 1a of the enclosure 1 can be used as a flow path for supplying air or exhausting air, and thus there is no need to provide a groove for forming a flow path in an outer circumference of the rotating part 32. With this configuration, enlargement of the flow path switching unit 3 can be suppressed. As a result, enlargement of the air supply device 200 can be suppressed.
In the second embodiment, as described above, the enclosure 1 includes the external air supply and exhaust ports 14 for supplying air from the outside of the enclosure 1 to the interior space 1a of the enclosure or exhausting air from the interior space 1a of the enclosure 1 to the outside of the enclosure 1. The pedestal part 31 includes the third holes 31c that are communicated to the external air supply and exhaust ports 14.
The air discharge port 12 is connected to the air intake port 2a of the pump 2.
When supplying air to one of the bag-shaped members 10, the control unit 4 is configured to control the drive unit 8 to rotate the rotating part 32 such that the enclosure interior space communication portion 32a forms the flow path between one of the first holes 31a and the air supply port 11 through the interior space 1a of the enclosure 1 and the groove portion 32b forms the flow path between the second hole 31b and one of the third holes 31c. When exhausting air from the one of the bag-shaped members 10, the control unit 4 is configured to control the drive unit 8 to rotate the rotating part 32 such that the enclosure interior space communication portion 32a forms the flow path between the air supply port 11 and the one of the third holes 31c through the interior space 1a of the enclosure 1 and the groove portion 32b forms the flow path between the one of the first holes 31a and the second hole 31b. With this configuration, when supplying air to the one of the bag-shaped members 10, air flows in the order of the one of the third holes 31c, the second hole 31b, the pump 2, the air supply port 11, the interior space 1a of the enclosure 1, the one of the first holes 31a, and the one of the bag-shaped members 10 from one of the external air supply and exhaust ports 14. Thus, air can be supplied to the one of the bag-shaped members 10 from the outside of the enclosure 1. Also, when exhausting air from the one of the bag-shaped members 10, air flows in the order of the one of the first holes 31a, the second hole 31b, the pump 2, the air supply port 11, the one of the third holes 31c, and the one of the external air supply and exhaust ports 14 from the one of the bag-shaped members 10. Thus, air inside the one of the bag-shaped members 10 can be discharged to the outside of the enclosure.
In the second embodiment, as described above, the pedestal part 31 includes the first holes 31a and the third holes 31c that are provided corresponding to the bag-shaped members 10. The control unit 4 is configured to switch the bag-shaped members 10 for supplying and exhausting air by rotating the rotating part 32 to switch the first holes 31a and the third holes 31c to be communicated to the enclosure interior space communication portion 32a and the groove portion 32b. With this configuration, among the first holes 31a and the third holes 31c, air flows to one of the first holes 31a and one of the third hole 31c that are communicated to the enclosure interior space communication portion 32a and the groove portion 32b, while air does not flow to other first holes 31a and other third holes 31c. With this configuration, it is possible to supply and exhaust air to a desired one of the bag-shaped members 10 among the bag-shaped members 10.
In the second embodiment, as described above, the control unit 4 is configured to switch the bag-shaped members 10 for supplying and exhausting air by rotating the rotating part 32 at the predetermined angle or at the predetermined interval. With this configuration, switching of the bag-shaped members 10 can be easily performed by setting the predetermined angle or the predetermined interval in accordance with positions of the first holes 31a, the second hole 31b and the third holes 31c.
In the second embodiment, as described above, when viewed from the pedestal part 31 side, the enclosure interior space communication portion 32a has an elliptical shape inwardly depressed. The groove portion 32b has the circular portion 32c that is communicated to the second hole 31b, and the protruding portion 32d that is selectively communicated to the first holes 31a and that outwardly protrudes from the circular portion 32c. With this configuration, the outer circumferences of the enclosure interior space communication portion 32a and the groove portion 32b can be aligned with the outer circumferences of the first hole 31a, the second hole 31b and the third hole 31c without misalignment. Thus, it is possible to prevent supplying air to the bag-shaped member 10 or exhausting air from the bag-shaped member 10 in a state in which the first hole 31a, the second hole 31b and the third hole 31c are partially blocked by the rotating part 32.
Other effects of the air supply device 200 according to the second embodiment are the same as those of the air supply device 100 according to the first embodiment described above.
The embodiments disclosed here should be considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the claims, not by the description of the embodiments described above, and furthermore includes all changes (modification examples) within the meaning and scope equivalent to the claims.
For example, in the first and second embodiments above, examples are shown in which the external air supply and exhaust ports are provided, but the present invention is not limited to this. For example, it may be configured without an external air supply and exhaust port.
In the first and second embodiments, examples are shown in which air is supplied to and exhausted from a single bag-shaped member, but the present invention is not limited to this. For example, air may be simultaneously supplied to a plurality of bag-shaped members, and may be simultaneously exhausted from a plurality of bag-shaped members. In this case, the groove portion may have a plurality of protruding portions.
In the first and second embodiments, examples are shown in which the plurality of the bag-shaped members are provided, but the present invention is not limited to this. For example, there may be only one bag-shaped member. In this case, one first hole and one third hole are provided in the pedestal part, and one object connection port and one external air supply and exhaust ports are provided in the enclosure.
In the first and second embodiments, examples are shown in which the pressure sensors are arranged near the air outlet port of the pump and near the air intake port of the pump, but the present invention is not limited to this. For example, they may be provided near the air supply and exhaust ports of the bag-shaped members.
In the first and second embodiments, examples are shown in which the control unit rotates the rotating part by every predetermined angle, but the present invention is not limited to this. For example, the control unit may rotate the rotating part at every predetermined interval. In this case, the predetermined interval may be set, from the initial position, corresponding to the interval at which the first holes are arranged, or corresponding to the interval at which the first holes and the third holes are arranged.
(1) In view of the state of the known technology, an air supply device according to an aspect of this disclosure comprises an enclosure, a pump, and a flow path switching unit. The enclosure has a sealed interior space for storing air therein. The pump is provided outside the enclosure. The pump is configured to supply air to the interior space of the enclosure. The flow path switching unit including a pedestal part mounted inside the enclosure, a rotating part rotatably mounted on the pedestal part, the rotating part having an enclosure interior space communication portion and a groove portion, and a drive unit configured to rotate the rotating part. The enclosure includes an air supply port for supplying air from the pump to the interior space of the enclosure, an air discharge port for discharging air from the groove portion of the rotating part, and at least one object connection port for supplying air to or exhausting air from at least one object. The pedestal part includes at least one first hole that is communicated to the at least one object connection port, and a second hole that is communicated to the air discharge port. The enclosure interior space communication portion is communicated to the air supply port through the interior space of the enclosure. The groove portion is separated from the enclosure interior space communication portion.
(2) In accordance with a preferred embodiment according to the air supply device mentioned above, the enclosure interior space communication portion includes a notch or a through hole that is provided on an outer portion of the rotating part. The notch or the through hole opens toward the pedestal part and the enclosure so as to be communicated to the air supply port through the interior space of the enclosure. The groove portion is provided on an inner portion of the rotating part. The groove portion opens toward the pedestal part so as not to be directly communicated to the enclosure interior space communication portion.
The air supply device according to the aspect of this disclosure, as mentioned above, comprises the flow path switching unit including the pedestal part mounted inside the enclosure, the rotating part rotatably mounted on the pedestal part, the rotating part having the enclosure interior space communication portion and the groove portion, and the drive unit configured to rotate the rotating part. The enclosure interior space communication portion includes the notch or the through hole that is provided on the outer portion of the rotating part, the notch or the through hole opening toward the pedestal part and the enclosure so as to be communicated to the air supply port through the interior space of the enclosure, for example. The groove portion is provided on the inner portion of the rotating part, the groove portion opening toward the pedestal part so as not to be directly communicated to the enclosure interior space communication portion, for example. With this configuration, the rotating part includes the enclosure interior space communication portion on the outer portion of the rotating part. Therefore, the sealed interior space of the enclosure can be used as a flow path for supplying air or exhausting air, and thus there is no need to provide a groove for forming a flow path in an outer circumference of the rotating part. With this configuration, enlargement of the flow path switching unit can be suppressed. As a result, enlargement of the air supply device can be suppressed.
(3) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, when viewed from the pedestal part side, the enclosure interior space communication portion has an elliptical shape inwardly depressed. The groove portion has a circular portion that is communicated to the second hole, and a protruding portion that is selectively communicated to the at least one first hole and that outwardly protrudes from the circular portion. With this configuration, outer circumferences of the enclosure interior space communication portion and the groove portion can be aligned with outer circumferences of the at least one first hole and the second hole without misalignment. Thus, it is possible to prevent supplying air to the at least one object or exhausting air from the at least one object in a state in which the at least one first hole and the second hole are partially blocked by the rotating part.
(4) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, one of the at least one first hole is located in the enclosure interior space communication portion when supplying air to one of the at least one object, and the one of the at least one first hole and the second hole are located in the groove portion when exhausting air from the one of the at least one object.
(5) In accordance with a preferred embodiment according to the air supply device mentioned above, the air supply device further comprises a control unit configured to control the drive unit to rotate the rotating part to a position at which a position of one of the at least one first hole and a position of the enclosure interior space communication portion coincide to each other when supplying air to one of the at least one object, and the control unit being configured to control the drive unit to rotate the rotating part to a position at which the one of the at least one first hole and the second hole are communicated to each other through the groove portion when exhausting air from the one of the at least one object. With this configuration, when supplying air to the one of the at least one object, the enclosure interior space communication portion and the one of the at least one first hole are communicated to each other and a flow path is formed from the interior space of the enclosure to the one of the at least one object. Thus, air inside the enclosure can be supplied to the one of the at least one object. Also, when exhausting air from the one of the at least one object, the one of the at least one first hole and the second hole are communicated to each other and a flow path is formed from the one of the at least one object to the air discharge port. Thus, the air can be exhausted from the one of the at least one object.
(6) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the control unit is configured to switch the at least one object for supplying and exhausting air by rotating the rotating part at a predetermined angle or at a predetermined interval. With this configuration, switching of the at least one object can be easily performed by setting the predetermined angle or the predetermined interval in accordance with positions of the at least one first hole and the second hole.
(7) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air supply device further comprises a pressure sensor for measuring a pressure of air supplied to the interior space of the enclosure or exhausted from the interior space of the enclosure. When supplying air to the one of the at least one object, the control unit is configured to control the drive unit to rotate the rotating part to a position at which no flow path is formed between the at least one first hole and the second hole while the pressure detected by the pressure sensor is higher than or equal to a predetermined value. With this configuration, the control unit can acquire that air has been sufficiently supplied to the one of the at least one object based on the fact that air pressure in the one of the at least one object in a full air state has become more than or equal to the predetermined value. In addition, when the pressure detected by the pressure sensor is more than or equal to the predetermined value, no flow path is formed between the at least one first hole and the second hole. Thus, no flow path is formed from the one of the at least one object to the air discharge port, and it is possible to prevent that air is discharged from the one of the at least one object.
(8) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, when exhausting air from the one of the at least one object, the control unit is configured to control the drive unit to rotate the rotating part to a position at which no flow path is formed between the at least one first hole and the second hole while the pressure detected by the pressure sensor is less than a predetermined value. With this configuration, by setting the predetermined value to an air pressure in the one of the at least one object in a sufficiently exhausted state, it is possible for the control unit to acquire that air has been sufficiently exhausted from the one of the at least one object. Also, no flow path is formed between the at least one first hole and the second hole while the pressure is less than the predetermined value. Thus, no flow path is formed from the one of the at least one object to the air discharge port, and it is possible to prevent that air is excessively discharged from the object.
(9) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the control unit is configured to stop a drive of the pump when rotating the rotating part. With this configuration, for example, when supplying air to one object by communicating one of a plurality of first holes to the enclosure interior space communication portion, it is possible to prevent that air supplied to the interior space of the enclosure is supplied by the pump to other object by communicating other first hole to the enclosure interior space communication portion during rotation of the rotating part.
(10) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the rotating part includes a gear portion formed on an outer circumferential surface of the rotating part, and the control unit is configured to control the drive unit to rotate the rotating part in a state in which the drive unit and the gear portion are engaged. With this configuration, the rotating part can function as a reduction gear by varying the number of teeth between the drive unit and the gear portion.
(11) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the enclosure includes at least one external air supply and exhaust port for supplying air from an outside of the enclosure to the interior space of the enclosure or exhausting air from the interior space of the enclosure to the outside of the enclosure. The pedestal part includes at least one third hole that is communicated to the at least one external air supply and exhaust port.
(12) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, one of the at least one first hole is located in the enclosure interior space communication portion and the second hole and one of the at least one third hole are located in the groove portion when supplying air to one of the at least one object. The one of the at least one first hole and the second hole are located in the groove portion and the one of the at least one third hole is located in the enclosure interior space communication portion when exhausting air from the one of the at least one object.
(13) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air discharge port is connected to an air intake port of the pump.
(14) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, when supplying air to the one of the at least one object, the control unit is configured to control the drive unit to rotate the rotating part such that the enclosure interior space communication portion forms a flow path between one of the at least one first hole and the air supply port through the interior space of the enclosure and the groove portion forms a flow path between the second hole and one of the at least one third hole. When exhausting air from the one of the at least one object, the control unit is configured to control the drive unit to rotate the rotating part such that the enclosure interior space communication portion forms a flow path between the air supply port and the one of the at least one third hole through the interior space of the enclosure and the groove portion forms a flow path between the one of the at least one first hole and the second hole. With this configuration, when supplying air to the one of the at least one object, air flows in the order of the one of the at least one third hole, the second hole, the pump, the air supply port, the interior space of the enclosure, the one of the at least one first hole and the one of the at least one object from the external air supply and exhaust port. Thus, air can be supplied to the one of the at least one object from the outside of the enclosure. Also, when exhausting air from the one of the at least one object, air flows in the order of the one of the at least one first hole, the second hole, the pump, the air supply port, the one of the at least one third hole and the external air supply and exhaust port from the one of the at least one object. Thus, air inside the one of the at least one object can be discharged to the outside of the enclosure.
(15) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the at least one first hole and the at least one third hole include a plurality of first holes and a plurality of third holes that are provided corresponding to a plurality of objects. The control unit is configured to switch the objects for supplying and exhausting air by rotating the rotating part to switch the first holes and the third holes to be communicated to the enclosure interior space communication portion and the groove portion. With this configuration, among the plurality of the first holes and the plurality of the third holes, air flows to a first hole and a third hole that are communicated to the enclosure interior space communication portion and the groove portion, while air does not flow to other first holes and other third holes. With this configuration, it is possible to supply and exhaust air to a desired object among the plurality of objects.
(16) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the groove portion has a circular portion and a protruding portion that is communicated to the circular portion and outwardly protrudes from the circular portion. One of the at least one first hole is located in the enclosure interior space communication portion and the second hole is located in the circular portion when supplying air to one of the at least one object. The one of the at least one first hole is located in the protruding portion and the second hole is located in the circular portion when exhausting air from the one of the at least one object.
(17) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the one of the at least one first hole is blocked by the rotating part when maintaining an inflated state or a deflated state of the one of the at least one object.
(18) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the groove portion has a circular portion and a protruding portion that is communicated to the circular portion and outwardly protrudes from the circular portion. One of the at least one first hole is located in the enclosure interior space communication portion, the second hole is located in the circular portion and one of the at least one third hole is located in the protruding portion when supplying air to one of the at least one object. The one of the at least one first hole is located in the protruding portion, the second hole is located in the circular portion and the one of the at least one third hole is located in the enclosure interior space communication portion when exhausting air from the one of the at least one object.
(19) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the one of the at least one first hole and the one of the at least one third hole are blocked by the rotating part when maintaining an inflated state or a deflated state of the one of the at least one object.
(20) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the groove portion has a circular portion and a protruding portion that is communicated to the circular portion and outwardly protrudes from the circular portion, the protruding portion being located opposite to the enclosure interior space communication portion with respect to a rotational center of the rotating part.
According to the present disclosure, it is possible to provide an air supply device capable of suppressing enlargement of the flow path switching unit.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts unless otherwise stated.
As used herein, the following directional terms “forward”, “rearward”, “front”, “rear”, “up”, “down”, “above”, “below”, “upward”, “downward”, “top”, “bottom”, “side”, “vertical”, “horizontal”, “perpendicular” and “transverse” as well as any other similar directional terms refer to those directions of an air supply device in an upright position on a horizontal surface. Accordingly, these directional terms, as utilized to describe the air supply device should be interpreted relative to an air supply device in an upright position on a horizontal surface.
The phrase “at least one of” as used in this disclosure means “one or more” of a desired choice. For one example, the phrase “at least one of” as used in this disclosure means “only one single choice” or “both of two choices” if the number of its choices is two. For another example, the phrase “at least one of” as used in this disclosure means “only one single choice” or “any combination of equal to or more than two choices” if the number of its choices is equal to or more than three. Also, the term “and/or” as used in this disclosure means “either one or both of”.
The term “attached” or “attaching”, as used herein, encompasses configurations in which an element is directly secured to another element by affixing the element directly to the other element; configurations in which the element is indirectly secured to the other element by affixing the element to the intermediate member(s) which in turn are affixed to the other element; and configurations in which one element is integral with another element, i.e. one element is essentially part of the other element. This definition also applies to words of similar meaning, for example, “joined”, “connected”, “coupled”, “mounted”, “bonded”, “fixed” and their derivatives. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean an amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, unless specifically stated otherwise, the size, shape, location or orientation of the various components can be changed as needed and/or desired so long as the changes do not substantially affect their intended function. Unless specifically stated otherwise, components that are shown directly connected or contacting each other can have intermediate structures disposed between them so long as the changes do not substantially affect their intended function. The functions of one element can be performed by two, and vice versa unless specifically stated otherwise. The structures and functions of one embodiment can be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such feature(s). Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2021-183359 | Nov 2021 | JP | national |