This application claims priority to Japanese Patent Application No. 2021-183360 filed in Japan on Nov. 10, 2021. The entire disclosure of Japanese Patent Application No. 2021-183360 is hereby incorporated herein by reference.
This invention generally relates to an air supply device. More specifically, this invention relates to an air supply device provided with a flow path switching unit.
Generally, an air supply device is equipped with a flow path switching unit (see, for example, Japanese Laid-Open Patent Application Publication No. H11-46934 (Patent Literature 1)).
The above-mentioned Patent Literature 1 discloses a device equipped with an air switching valve for supplying and exhausting air and an air pump for supplying air to the air switching valve. In the above-mentioned Patent Literature 1, the air switching valve includes a disc-shaped fixed plate, a rotor provided on the fixed plate, and a compression spring that pressurizes the rotor against the fixed plate.
However, when a rotating part (the rotor) and a pedestal (the fixed plate) are pressed together by the compression spring as in the above-mentioned Patent Literature 1, the pressing force of a spring member alone is weak and a gap is formed between the rotating part and the pedestal, which may cause air to leak. Therefore, it is considered to increase the size of the spring member and to increase the pressing force. However, there is a problem that by increasing the pressing force, the friction coefficient when rotating the rotating part increases, and that the rotating part does not rotate smoothly.
One object of this disclosure is to provide an air supply device capable of suppressing air leakage and smoothly rotating the rotating part.
(1) In view of the state of the know technology, an air supply device according to a first aspect of this disclosure comprises a pump and a flow path switching unit. The pump is configured to supply air. The flow path switching unit includes a pedestal part forming a flow path from the pump to at least one object, a rotating part rotatably provided with respect to the pedestal part to switch the flow path, and a sheet member disposed between the pedestal part and the rotating part. The sheet member has a first layer and a second layer that are stacked in a direction directing from the rotating part to the pedestal part. The first layer has a smaller elastic modulus than the second layer. The second layer has a smaller friction coefficient than the first layer.
Referring now to the attached drawings which form a part of this original disclosure;
Selected embodiments will now be explained with reference to the drawings. It will be apparent to those skilled in the art from this disclosure that the following descriptions of the embodiments are provided for illustration only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
First, with reference to
As shown in
As shown in
As shown in
As shown in
As shown in
When viewed from the Z1 side to the Z2 side, the second hole 11b is provided at the same position as an air discharge port 32 provided in the enclosure 3. The second hole 11b (the air discharge port 32) is provided on an inner circumferential side closer to the center than the first holes 11a. The second hole 11b is communicated to the air discharge port 32 provided in the enclosure 3.
When viewed from the Z1 side to the Z2 side, the third holes 11c are provided at the same positions as at least one external air supply and exhaust port 33 (e.g., a plurality of external air supply and exhaust ports 33 in
As shown in
As shown in
The enclosure interior space communication portion 12a is provided on the outer peripheral portion of the rotating part 12. The enclosure interior space communication portion 12a is communicated to an air supply port 34 through an interior space of the enclosure 3. Specifically, the enclosure interior space communication portion 12a opens toward the pedestal part 11 (see
As shown in
When exhausting air, the rotating part 12 rotates so that the portion of the enclosure interior space communication portion 12a that opens toward the pedestal part 11 (the Z2 side) is communicated to one of the third holes 11c provided in the pedestal part 11, and a flow path is formed between the third hole 11c and the air supply port 34. When exhausting air, the portion of the enclosure interior space communication portion 12a that opens toward the pedestal part 11 (the Z2 side) is not directly communicated to the first holes 11a. At this time, one of the first holes 11a is located in the groove portion 12b that is separated from the enclosure interior space communication portion 12a, and other first holes 11a are blocked by the wall portion 12f of the rotating part 12. The rotating part 12 selectively communicates one of the third holes 11c to the enclosure interior space communication portion 12a depending on the rotational position.
During the maintained state, the rotating part 12 rotates so that the portion of the enclosure interior space communication portion 12a that opens toward the pedestal part 11 (the Z2 side) is not communicated to the first holes 11a and the third holes 11c provided in the pedestal part 11. In other words, the first holes 11a and the third holes 11c are blocked by the wall portion 12f, and air is neither supplied to the bag-shaped members 10, nor exhausted from the bag-shaped members 10.
As shown in
As shown in
When exhausting air, the protruding portion 12d rotates so as to be communicated to one of the first holes 11a. As a result, the first hole 11a and the second hole 11b are communicated. At this time, the third holes 11c are not directly communicated to the protruding portion 12d. One of the third holes 11c is located in the enclosure interior space communication portion 12a and other third holes 11c are blocked by the wall portion 12f. Thus, the third holes 11c and the second hole 11b are not directly communicated. The rotating part 12 selectively communicates one of the first holes 11a and the second hole 11b depending on the rotational position.
During the maintained state, the protruding portion 12d rotates so as not to be communicated to the first holes 11a and the third holes 11c. The first holes 11a and the third holes 11c are blocked by the wall portion 12f, and the first holes 11a and the third holes 11c are not communicated to the second hole 11b. As a result, air is neither supplied to the bag-shaped members 10 nor exhausted from the bag-shaped members 10.
As shown in
The sheet member 13 comprises a first sheet 13a forming the sealing layer and a second sheet 13b forming the sliding promotion layer. The second sheet 13b is provided separately from the first sheet 13a. The sheet member 13 is attached to the pedestal part 11. The sheet member 13 is formed by a laminate body in which the first sheet 13a and the second sheet 13b are stacked or laminated.
As shown in
The upper surface of the pedestal part 11 and the surface of the sheet member 13 are both flat and closely contact to each other without a gap. Here, undulations, which are minute irregularities, can occur in the pedestal part 11, but the first sheet 13a is configured to closely contact the pedestal part 11 in accordance with the undulations, which are minute irregularities of the surface of the pedestal part 11. Specifically, the surface of the first sheet 13a contacting the pedestal part 11 is elastically deformed along the surface of the pedestal part 11. As a result, the pedestal part 11 and the sheet member 13 can closely contact to each other even when the undulations, which are minute irregularities, are generated.
As shown in
The first holes 11a of the pedestal part 11, the fourth holes 131a of the first sheet 13a, and the seventh holes 132a of the second sheet 13b are communicated to each other. Therefore, air can flow from the pedestal part 11 to the rotating part 12, and air can also flow from the rotating part 12 to the pedestal part 11. In addition, the second hole 11b of the pedestal part 11, the fifth hole 131b of the first sheet 13a, and the eighth hole 132b of the second sheet 13b are communicated to each other. Therefore, air can flow from the pedestal part 11 to the rotating part 12, and air can also flow from the rotating part 12 to the pedestal part 11. Furthermore, the third holes 11c of the pedestal part 11, the sixth holes 131c of the first sheet 13a, and the ninth holes 132c of the second sheet 13b are communicated to each other. Therefore, air can flow from the pedestal part 11 to the rotating part 12, and air can also flow from the rotating part 12 to the pedestal part. Thus, the sheet member 13 includes through holes (e.g., the fourth holes 131a, the sixth holes 131c, the seventh holes 132a and the ninth holes 132c) that extends through the first layer (the first sheet 13a) and the second layer (13b) at locations corresponding to the object connection ports 31 and the external air supply and exhaust ports 33. Also, the sheet member 13 includes through holes (e.g., the fifth hole 131b and the eighth hole 132b) that extends through the first layer (the first sheet 13a) and the second layer (13b) at a location corresponding to the air discharge port 32.
The second sheet 13b deforms in accordance with the deformation of the surface of the first sheet 13a that is in contact with the second sheet 13b. Therefore, it is preferable that the thickness (the length in the Z direction) of the second sheet 13b is smaller than the thickness of the first sheet 13a. The thickness of the second sheet 13b is, for example, between 0.1 mm and 0.5 mm. Thus, in the illustrated embodiment, the first sheet 13a is thicker than the second sheet 13b.
As shown in
The pressing force of the spring member 14 is greater than the force (the internal pressure of the bag-shaped member 10) obtained by the product of the sum of the cross-sectional areas of the object connection ports 31 and the maximum value of the air pressure of the bag-shaped members 10 (see
As shown in
As shown in
As shown in
The enclosure 3 is made of a resin. The enclosure 3 is, for example, a box of a rectangular or cubic shape. The enclosure 3 has a sealed interior space for storing air therein. The flow path switching unit 1 is disposed inside the enclosure 3. The enclosure 3 is arranged inside the main body 5.
The enclosure 3 enables air to be stored in the interior space and has a function of a buffer tank. The buffer tank is a tank whose volume is set to be larger than an inlet to which a pipe is connected. The buffer tank is a tank to reduce fluctuation of air pressure in the buffer tank by the larger volume and to suppress pulsation of outlet pressure.
As shown in
The air supply port 34 is a hole for supplying air from the pump 2 into the interior space of the enclosure 3. A first pipe 30a is connected to the air supply port 34 so as not to form a gap to communicate an air outlet port of the pump 2 and the air supply port 34 (see
The air discharge port 32 is a hole for discharging air from the groove portion 12b to the pump 2. A second pipe 30b is connected to the air discharge port 32 so as not to form a gap to communicate the air discharge port 32 and an air intake port of the pump 2 (see
The object connection ports 31 are holes for supplying air to the bag-shaped members 10 or exhausting air from the bag-shaped members 10. Third pipes 30c are connected to the object connection ports 31, respectively, so as not to form a gap to communicate the bag-shaped members 10 and the object connection ports 31 (see
The external air supply and exhaust ports 33 are holes for supplying air from the outside of the enclosure 3 to the interior space of the enclosure 3 or for exhausting air from the interior space of the enclosure 3 to the outside of the enclosure 3. Fourth pipes 30d (see
As shown in
As shown in
The pump 2, the enclosure 3, the control unit 4, and the pressure sensors 6 are arranged inside the main body 5. The main body 5 is, for example, a box made of resin. The main body 5 is also provided with a power supply (not shown) for driving the pump 2 and the flow path switching unit 1. Also, the power supply supplies electric power to the control unit 4, the pressure sensors 6 and the phase detection unit 9, as needed and/or desired.
The pressure sensors 6 measure the pressure of air supplied to the interior space of the enclosure 3 or exhausted from the interior space of the enclosure 3. The pressure sensors 6 are provided to the first pipe 30a connected between the air outlet port of the pump 2 and the air supply port 34 (on the air outlet port side of the pump 2) and the second pipe 30b connected between the air discharge port 32 and the air inlet port of the pump 2 (on the air inlet port side of the pump 2), respectively. When the pressure sensor 6 on the first pipe 30a detects a pressure equal to or higher than a predetermined value, the control unit 4 is configured to stop the pump 2. Also, when the pressure sensor 6 on the second pipe 30b detects a pressure below a predetermined value, the control unit 4 is configured to stop the pump 2. The predetermined values of the two pressure sensors 6 are different, and for example, the predetermined value for the pressure sensor 6 on the first pipe 30a is a positive value and the predetermined value for the pressure sensor 6 on the second pipe 30b is 0 or a negative value.
The control of the control unit 4 when supplying air will be described based on
In step S2, the control unit 4 stops the pump 2. In step S3, the control unit 4 controls the drive unit 8 to rotate the rotating part 12 at a predetermined angle or at a predetermined interval by driving the motor 8a of the drive unit 8. The predetermined angle of the rotating part 12 is set in accordance with the interval at which the first holes 11a and the third holes 11c are arranged by using a position at which the first detection portion 91a and the second detection portion 91b both detect light as the initial position (i.e., 0 degrees). The initial position is also a position in which air supply and exhaust to all the bag-shaped members 10 are also stopped. When the rotating part 12 is located at the initial position, the control unit 4 rotates the rotating part 12 to the predetermined angle. Specifically, the control unit 4 rotates the rotating part 12 until the second detection portion 91b detects light a predetermined number of times corresponding to the predetermined angle. When the rotating part 12 has been rotated from the initial position (e.g., when air is being supplied to other bag-shaped member 10), the control unit 4 rotates the rotating part 12 by an angular difference obtained by subtracting a rotational angle that has already been rotated from an angle between the initial position and a position corresponding to the target bag-shaped member 10. Specifically, the control unit 4 controls the drive unit 8 to rotate the rotating part 12 until the second detection portion 91b detects light a predetermined number of times corresponding to the angular difference.
In step S4, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 12 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 12 is the predetermined angle, or in other words, if the second detection portion 91b detects light the predetermined number of times, then it proceeds to step S5. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S4 is repeated until the predetermined angle is reached (until light is detected the predetermined number of times).
In step S5, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 12.
In step S6, the control unit 4 drives the pump 2 to supply air to the bag-shaped member 10. In step S7, the control unit 4 changes the control depending on whether or not the pressure detected by the pressure sensor 6 provided to the first pipe 30a is more than or equal to the predetermined value. If it is more than or equal to the predetermined value, then it proceeds to step S8 and the control unit 4 stops the pump 2. If it is less than the predetermined value, then step S7 is repeated until it becomes more than or equal to the predetermined value.
After stopping the pump 2 in step S8, in step S9, the control unit 4 controls the drive unit 8 to rotate the rotating part 12 to the position for the maintained state. In step S10, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 12 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 12 is the predetermined angle, then it proceeds to step S11. A case in which the rotational angle of the rotating part 12 is the predetermined angle means a case in which the second detection portion 91b detects light the predetermined number of times. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S10 is repeated until the predetermined angle is reached (until light is detected the predetermined number of times). In step S11, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 12. With this configuration, the bag-shaped members 10 can maintain the inflated state.
The control of the control unit 4 when exhausting air will be described based on
In step S22, the control unit 4 stop the pump 2. In step S23, the control unit 4 controls the drive unit 8 to rotate the rotating part 12 at a predetermined angle or at a predetermined interval by driving the motor 8a of the drive unit 8. The predetermined angle of the rotating part 12 is set in accordance with the interval at which the first holes 11a and the third holes 11c are arranged by using a position at which the first detection portion 91a and the second detection portion 91b both detect light as the initial position (i.e., 0 degrees). The initial position is also a position in which air supply and exhaust to all the bag-shaped members 10 are also stopped. When the rotating part 12 is located at the initial position, the control unit 4 rotates the rotating part 12 to the predetermined angle. Specifically, the control unit 4 rotates the rotating part 12 until the second detection portion 91b detects light a predetermined number of times corresponding to the predetermined angle. When the rotating part 12 has been rotated from the initial position (e.g., when air is being exhausted from other bag-shaped member 10), the control unit 4 rotates the rotating part 12 by an angular difference obtained by subtracting a rotational angle that has already been rotated from an angle between the initial position and a position corresponding to the target bag-shaped member 10. Specifically, the control unit 4 controls the drive unit 8 to rotate the rotating part 12 until the second detection portion 91b detects light a predetermined number of times corresponding to the angular difference.
In step S24, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 12 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 12 is the predetermined angle, or in other words, if the second detection portion 91b detects light the predetermined number of times, then it proceeds to step S25. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S24 is repeated until the predetermined angle is reached (until light is detected the predetermined number of times).
In step S25, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 12.
In step S26, the control unit 4 drives the pump 2 to exhaust air from the bag-shaped member 10. In step S27, the control unit 4 changes the control depending on whether or not the pressure detected by the pressure sensor 6 provided to the second pipe 30b is less than the predetermined value. If it is less than the predetermined value, then it proceeds to step S28 and the control unit 4 stops the pump 2. If it is more than or equal to the predetermined value, then step S27 is repeated until it becomes less than the predetermined value.
After stopping the pump 2 in step S28, in step S29, the control unit 4 controls the drive unit 8 to rotate the rotating part 12 to the position for the maintained state. In step S30, the control unit 4 performs the next control differently depending on whether the rotational angle of the rotating part 12 is the predetermined angle or not. Specifically, the control unit 4 acquires the detection result detected by the detector plate 91, and if the rotational angle of the rotating part 12 is the predetermined angle, or in other words, if the second detection portion 91b detects light the predetermined number of times, it proceeds to step S31. On the other hand, if the second detection portion 91b has not detected light the predetermined number of times, then step S30 is repeated until the predetermined angle is reached (until the second detection portion 91b detects light the predetermined number of times). In step S31, the control unit 4 stops the motor 8a of the drive unit 8 to stop the rotation of the rotating part 12. With this configuration, the bag-shaped members 10 can maintain the deflated state.
In the first embodiment, the following effects can be obtained.
In the first embodiment, as described above, the air supply device 100 comprises the sheet member 13 disposed between the pedestal part 11 and the rotating part 12. The sheet member 13 has the first layer and the second layer that are stacked in the direction directing from the rotating part 12 to the pedestal part 11. The first layer has a smaller elastic modulus than the second layer. The second layer has a smaller friction coefficient than the first layer. With this configuration, the first layer of the sheet member 13 has a smaller elastic modulus than the second layer. Therefore, the rotating part 12 or the pedestal part 11 and the sheet member 13 can closely contact to each other by elastic deformation of the first layer, and thus formation of a gap can be prevented. As a result, since the first layer functions as a sealing layer, air leakage can be suppressed. In addition, since the second layer has a smaller friction coefficient than the first layer, sliding of the rotating part 12 against the pedestal part 11 can be facilitated compared to a case in which only a first layer is provided, and thus the rotating part 12 can be rotated smoothly against the pedestal part 11. As a result, air leakage can be suppressed and the rotating part 12 can be rotated smoothly.
In the first embodiment, as described above, the first layer is located closer to the pedestal part 11 than the second layer. The second layer is located closer to the rotating part 12 than the first layer. Thus, the first layer is located on the pedestal part 11 side of the sheet member 13 and the second layer is located on the rotating part 12 side, for example. With this configuration, the sheet member 13 and the pedestal part 11 can closely contact to each other by contacting the pedestal part 11 and the first layer having a small elastic modulus. In addition, the rotating part 12 can be rotated more smoothly by contacting the rotating part 12 and the second layer having a small friction coefficient.
In the first embodiment, as described above, the first layer closely contacts the pedestal part 11 in accordance with undulations that are minute irregularities in the surface of the pedestal part 11. With this configuration, even when there are undulations that are minute irregularities in the surface of the pedestal part 11, the pedestal part 11 and the sheet member 13 can closely contact to each other, and thus it is possible to prevent a gap from being formed between the pedestal part 11 and the sheet member 13.
In the first embodiment, as described above, the sheet member 13 includes the first sheet 13a forming the first layer and the second sheet 13b forming the second layer. The second sheet 13b is provided separately from the first sheet 13a. With this configuration, the first layer and the second layer are provided separately. Therefore, the first sheet 13a can be changed to a first sheet 13a having a smaller elastic modulus as appropriate, and the second sheet 13b can be changed to a second sheet 13b having a smaller friction coefficient as appropriate. Thus, the sheet member 13 and the pedestal part 11 can more appropriately and closely contact to each other and the rotating part 12 can be more appropriately and smoothly rotated.
In the first embodiment, as described above, the first layer includes an elastomer and the second layer includes a resin having a smaller friction coefficient than the first layer. With this configuration, for example, when the second layer includes nylon, which is a resin having a smaller friction coefficient, the elastic modulus of the first layer can be smaller than that of the second layer since the elastomer has a smaller elastic modulus than the nylon, and the friction coefficient of the second layer can be smaller than that of the first layer.
In the first embodiment, as described above, the sheet member 13 is attached to the pedestal part 11. With this configuration, when the sheet member 13 and the pedestal part 11 are each provided with a hole for forming a flow path, the hole provided in the sheet member 13 can be easily aligned to the hole in the pedestal part 11.
In the first embodiment, as described above, the air supply device 100 further comprises the spring member 14 disposed on the surface of the rotating part 12 that faces away from the pedestal part 11. The spring member 14 is configured to press the rotating part 12 against the pedestal part 11. With this configuration, since the spring member 14 presses the rotating part 12, the pedestal part 11, the sheet member 13 and the rotating part 12 can more closely contact to each other. As a result, it is possible to prevent the formation of a gap between the rotating part 12 and the pedestal part 11 and to further suppress air leakage.
In the first embodiment, as described above, the spring member 14 is configured to press the vicinity of the outer peripheral portion of the rotating part 12. With this configuration, it is possible to prevent deformation of the outer peripheral portion of the sheet member 13 that is pressed through the rotating part 12 in a direction opposite to a direction in which the rotating part is pressed.
In the first embodiment, as described above, the air supply device 100 further comprises the object connection ports 31 for supplying air to the bag-shaped members 10. The spring member 14 is configured such that the force to press down the rotating part 12 is greater than the force obtained by the product of the sum of the cross-sectional areas of the object connection ports 31 and the maximum value of the air pressure inside the bag-shaped members 10. With this configuration, the force of the spring member 14 to press down the rotating part 12 is greater than the internal pressure that is applied to the flow path switching unit 1 from the bag-shaped members 10 and is obtained by the product of the sum of the cross-sectional areas of the object connection ports 31 and the maximum value of the air pressure inside the bag-shaped members. Thus, it is possible to prevent a gap from being formed by the internal pressure from the bag-shaped members 10 that tends to push up the pedestal part 11.
With reference to
As shown in
As shown in
The pressure member 17 does not contact the rotating part 12, except for a bottom surface (a surface on the Z2 side) 17b of the protruding portion 17a. Therefore, it is possible to apply the pressing force only on the outer peripheral portion of the rotating part 12. The protruding portion 17a is arranged in a circular ring or rim shape along an outer periphery of the pressure member 17. The protruding portion 17a may be provided intermittently, but it is preferable to be provided continuously from the viewpoint of uniformly pressing the outer periphery of the rotating part 12. The pressure member 17 is the same size as the rotating part 12 as viewed in the Z direction. In
In the second embodiment, the spring member 141 is disposed in the vicinity of the center of the pressure member 17. The size of the spring member 141 is smaller than the pressure member 17. Therefore, the center portion of the pressure member 17 may be slightly deformed (concaved) toward the rotating part 12. Therefore, the protrusion amount of the protruding portion 17a is set to a size that can avoid the center portion of the pressure member 17 contacting the rotating part 12 even when the center portion of the pressure member 17 is slightly deformed toward the rotating part 12.
Other configurations of the air supply device 200 according to the second embodiment are the same as those of the air supply device 100 according to the first embodiment described above.
In the second embodiment, the following effects can be obtained.
In the second embodiment, as described above, the air supply device 200 comprises the sheet member 13 disposed between the pedestal part 11 and the rotating part 12. The sheet member 13 has the first layer and the second layer that are stacked in the direction directing from the rotating part 12 to the pedestal part 11. The first layer has a smaller elastic modulus than the second layer. The second layer has a smaller friction coefficient than the first layer. With this configuration, the first layer of the sheet member 13 has a smaller elastic modulus than the second layer. Therefore, the rotating part 12 or the pedestal part 11 and the sheet member 13 can closely contact to each other by elastic deformation of the first layer, and thus formation of a gap can be prevented. As a result, since the first layer functions as a sealing layer, air leakage can be suppressed. In addition, since the second layer has a smaller friction coefficient than the first layer, sliding of the rotating part 12 against the pedestal part 11 can be facilitated compared to a case in which only a first layer is provided, and thus the rotating part 12 can be rotated smoothly against the pedestal part 11. As a result, air leakage can be suppressed and the rotating part 12 can be rotated smoothly.
In the second embodiment, as described above, the air supply device 200 further comprises the disc-shaped pressure member 17 disposed between the spring member 141 and the rotating part 12. The rotating part 12 is configured to be pressed against the pedestal part 11 by the spring member 141 and the pressure member 17. With this configuration, the rotating part 12 is pressed against the pedestal part 11 by the pressure member 17. Thus, there is no need to increase the size of the spring member 141 in order to increase the pressing force of the spring member 141. As a result, even with a small spring member 141, it is possible to prevent the formation of a gap between the rotating part 12 and the pedestal part 11.
Other effects of the air supply device 200 according to the second embodiment are the same as those of the air supply device 100 according to the first embodiment described above.
The embodiments disclosed here should be considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the claims, not by the description of the embodiments described above, and furthermore includes all changes (modification examples) within the meaning and scope equivalent to the claims.
For example, in the first embodiment and the second embodiment above, examples are shown in which the sheet member comprises the first sheet and the second sheet, but the present invention is not limited to this. For example, the sheet member may be a composite material integrally combining two or more different materials.
In the first embodiment and the second embodiment, examples are shown in which the first layer is located on the pedestal part side, but the present invention is not limited to this. For example, the second layer may be positioned on the pedestal part side.
In the first embodiment and the second embodiment, examples are shown in which the sheet member is attached to the pedestal part, but the present invention is not limited to this. For example, the sheet member may be attached to the rotating part. In this case, the sheet member is provided with holes or openings in accordance with the positions and the shape of the enclosure interior space communication portion and the groove portion of the rotating part.
In the first embodiment and the second embodiment, examples are shown in which the sheet member is attached to the pedestal part, but the present invention is not limited to this. For example, the first layer may be attached to the rotating part and the second layer may be attached to the pedestal part, or the first layer may be attached to the pedestal part and the second layer may be attached to the rotating part.
In the first embodiment and the second embodiment, examples are shown in which the external air supply and exhaust ports are provided at the bottom of the enclosure 3, but the present invention is not limited to this. For example, the external air supply and exhaust ports may not be provided. In this case, the air discharge port may be configured to open to the outside without being connected to the pump to discharge air from the groove portion.
In the first embodiment and the second embodiment, examples are shown in which the enclosure is provided, but the present invention is not limited to this. For example, a groove may be provided on the outer peripheral portion of the rotating part without an enclosure.
In the second embodiment, an example is shown in which the pressure member has a concave shape in a cross-sectional view, but the present invention is not limited to this, and the pressure member may be a flat plate in a cross-sectional view.
(1) In view of the state of the know technology, an air supply device according to a first aspect of this disclosure comprises a pump and a flow path switching unit. The pump is configured to supply air. The flow path switching unit includes a pedestal part forming a flow path from the pump to at least one object, a rotating part rotatably provided with respect to the pedestal part to switch the flow path, and a sheet member disposed between the pedestal part and the rotating part. The sheet member has a first layer and a second layer that are stacked in a direction directing from the rotating part to the pedestal part. The first layer has a smaller elastic modulus than the second layer. The second layer has a smaller friction coefficient than the first layer.
The air supply device according to the first aspect of this disclosure, as described above, comprises the sheet member disposed between the pedestal part and the rotating part. The sheet member has the first layer and the second layer that are stacked in the direction directing from the rotating part to the pedestal part. The first layer has a smaller elastic modulus than the second layer. The second layer has a smaller friction coefficient than the first layer. With this configuration, the first layer of the sheet member has a smaller elastic modulus than the second layer. Therefore, the rotating part or the pedestal part and the sheet member can closely contact to each other by elastic deformation of the first layer, and thus formation of a gap can be prevented. As a result, since the first layer functions as a sealing layer, air leakage can be suppressed. In addition, since the second layer has a smaller friction coefficient than the first layer, sliding of the rotating part against the pedestal part can be facilitated compared to a case in which only a first layer is provided, and thus the rotating part can be rotated smoothly against the pedestal part. As a result, air leakage can be suppressed and the rotating part can be rotated smoothly.
(2) In accordance with a preferred embodiment according to the air supply device mentioned above, the first layer is located closer to the pedestal part than the second layer. The second layer is located closer to the rotating part than the first layer. Thus, the first layer is located on the pedestal part side of the sheet member and the second layer is located on the rotating part side, for example. With this configuration, the sheet member and the pedestal part can closely contact to each other by contacting the pedestal part and the first layer having a small elastic modulus. In addition, the rotating part can be rotated more smoothly by contacting the rotating part and the second layer having a small friction coefficient.
(3) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the first layer closely contacts the pedestal part in accordance with undulations that are minute irregularities in a surface of the pedestal part. With this configuration, even when there are undulations that are minute irregularities in the surface of the pedestal part, the pedestal part and the sheet member can closely contact to each other, and thus it is possible to prevent a gap from being formed between the pedestal part and the sheet member.
(4) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the sheet member includes a first sheet forming the first layer and a second sheet forming the second layer. The second sheet is provided separately from the first sheet. With this configuration, the first layer and the second layer are provided separately. Therefore, the first sheet can be changed to a first sheet having a smaller elastic modulus as appropriate, and the second sheet can be changed to a second sheet having a smaller friction coefficient as appropriate. Thus, the sheet member and the pedestal part can more appropriately and closely contact to each other and the rotating part can be more appropriately and smoothly rotated.
(5) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the first layer includes an elastomer and the second layer includes a resin having a smaller friction coefficient than the first layer. With this configuration, for example, when the second layer includes nylon, which is a resin having a smaller friction coefficient, the elastic modulus of the first layer can be smaller than that of the second layer since the elastomer has a smaller elastic modulus than the nylon, and the friction coefficient of the second layer can be smaller than that of the first layer.
(6) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the sheet member is attached to the pedestal part. With this configuration, when the sheet member and the pedestal part are each provided with a hole for forming a flow path, the hole provided in the sheet member can be easily aligned to the hole in the pedestal part.
(7) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air supply device further comprises a spring member disposed on a surface of the rotating part that faces away from the pedestal part. The spring member is configured to press the rotating part against the pedestal part. With this configuration, since the spring member presses the rotating part, the pedestal part, the sheet member and the rotating part can more closely contact to each other. As a result, it is possible to prevent the formation of a gap between the rotating part and the pedestal part and to further suppress air leakage.
(8) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the spring member is configured to press a vicinity of an outer peripheral portion of the rotating part. With this configuration, it is possible to prevent deformation of an outer peripheral portion of the sheet member that is pressed through the rotating part in a direction opposite to a direction in which the rotating part is pressed. The vicinity of the outer peripheral portion includes the outer peripheral portion and a position slightly spaced apart from the outer peripheral portion.
(9) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air supply device further comprises at least one object connection port for supplying air to the at least one object. The spring member is configured such that a force to press down the rotating part is greater than a force obtained by a product of a sum of a cross-sectional area of the at least one object connection port and a maximum value of an air pressure inside the at least one object. With this configuration, the force of the spring member to press down the rotating part is greater than the internal pressure that is applied to the flow path switching unit from the at least one object and is obtained by the product of the sum of the cross-sectional area of the at least one object connection port and the maximum value of the air pressure inside the at least one object. Thus, it is possible to prevent a gap from being formed by the internal pressure from the at least one object that tends to push up the pedestal part.
(10) In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air supply device further comprises a disc-shaped pressure member disposed between the spring member and the rotating part. The rotating part is configured to be pressed against the pedestal part by the spring member and the pressure member. With this configuration, the rotating part is pressed against the pedestal part by the pressure member. Thus, there is no need to increase the size of the spring member in order to increase the pressing force of the spring member. As a result, even with a small spring member, it is possible to prevent the formation of a gap between the rotating part and the pedestal part.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the spring member contacts the rotating part to directly press the rotating part against the pedestal part.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the flow path switching unit further includes a drive unit configured to rotate the rotating part.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air supply device further comprises a control unit configured to control the drive unit to rotate the rotating part.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the rotating part further includes a gear portion on an outer circumferential surface of the rotating part, the gear portion being engaged with the drive unit.
(15) In view of the state of the know technology, an air supply device according to a second aspect of this disclosure comprises a pump and a flow path switching unit. The pump is configured to supply air. The flow path switching unit includes a pedestal part forming a flow path from the pump to at least one object, a rotating part rotatably provided with respect to the pedestal part to switch the flow path, and a sheet member including a sliding promotion layer disposed between the pedestal part and the rotating part.
The air supply device according to the second aspect of this disclosure, as described above, comprises the sheet member including the sliding promotion layer disposed between the pedestal part and the rotating part. As a result, the rotating part can be smoothly rotated by the sliding promotion layer of the sheet member.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the air supply device further comprises an enclosure having a sealed interior space for storing air therein. The flow path switching unit is disposed inside the enclosure.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the enclosure includes an air supply port for supplying air from the pump to the interior space of the enclosure, at least one object connection port for supplying air to or exhausting air from the at least one object, and at least one external air supply and exhaust port for supplying air from an outside of the enclosure to the interior space of the enclosure or exhausting air from the interior space of the enclosure to the outside of the enclosure.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the sheet member includes through holes that extends through the first layer and the second layer at locations corresponding to the at least one object connection port and the at least one external air supply and exhaust port.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the first sheet is thicker than the second sheet.
In accordance with a preferred embodiment according to any one of the air supply devices mentioned above, the first sheet and the second sheet have the same overall shape as the pedestal part.
According to the first aspect of the present disclosure, it is possible to provide an air supply device capable of suppressing air leakage and smoothly rotating a rotating part. According to the second aspect of the present disclosure, the rotating part can be smoothly rotated.
In understanding the scope of the present invention, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. Also, the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts unless otherwise stated.
As used herein, the following directional terms “forward”, “rearward”, “front”, “rear”, “up”, “down”, “above”, “below”, “upward”, “downward”, “top”, “bottom”, “side”, “vertical”, “horizontal”, “perpendicular” and “transverse” as well as any other similar directional terms refer to those directions of an air supply device in an upright position on a horizontal surface. Accordingly, these directional terms, as utilized to describe the air supply device should be interpreted relative to an air supply device in an upright position on a horizontal surface.
The phrase “at least one of” as used in this disclosure means “one or more” of a desired choice. For one example, the phrase “at least one of” as used in this disclosure means “only one single choice” or “both of two choices” if the number of its choices is two. For another example, the phrase “at least one of” as used in this disclosure means “only one single choice” or “any combination of equal to or more than two choices” if the number of its choices is equal to or more than three. Also, the term “and/or” as used in this disclosure means “either one or both of”.
The term “attached” or “attaching”, as used herein, encompasses configurations in which an element is directly secured to another element by affixing the element directly to the other element; configurations in which the element is indirectly secured to the other element by affixing the element to the intermediate member(s) which in turn are affixed to the other element; and configurations in which one element is integral with another element, i.e. one element is essentially part of the other element. This definition also applies to words of similar meaning, for example, “joined”, “connected”, “coupled”, “mounted”, “bonded”, “fixed” and their derivatives. Finally, terms of degree such as “substantially”, “about” and “approximately” as used herein mean an amount of deviation of the modified term such that the end result is not significantly changed.
While only selected embodiments have been chosen to illustrate the present invention, it will be apparent to those skilled in the art from this disclosure that various changes and modifications can be made herein without departing from the scope of the invention as defined in the appended claims. For example, unless specifically stated otherwise, the size, shape, location or orientation of the various components can be changed as needed and/or desired so long as the changes do not substantially affect their intended function. Unless specifically stated otherwise, components that are shown directly connected or contacting each other can have intermediate structures disposed between them so long as the changes do not substantially affect their intended function. The functions of one element can be performed by two, and vice versa unless specifically stated otherwise. The structures and functions of one embodiment can be adopted in another embodiment. It is not necessary for all advantages to be present in a particular embodiment at the same time. Every feature which is unique from the prior art, alone or in combination with other features, also should be considered a separate description of further inventions by the applicant, including the structural and/or functional concepts embodied by such feature(s). Thus, the foregoing descriptions of the embodiments according to the present invention are provided for illustration only, and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2021-183360 | Nov 2021 | JP | national |