The present invention is related to the following patent applications and patents, each of which is incorporated herein by reference:
U.S. patent application Ser. No. 10/074,347, filed Feb. 12,2002, and entitled “Electro-Kinetic Air Transporter-Conditioner Device with Enhanced Housing” (Attorney Docket No. SHPR-01028US5);
U.S. Pat. No. 6,176,977, issued Jan. 23, 2001, entitled “Electro-Kinetic Air Transporter-Conditioner” (Attorney Docket No. SHPR-01041US0);
U.S. Pat. No. 6,350,417 issued May 4, 2000, entitled “Electrode Self Cleaning Mechanism For Electro-kinetic Air Transporter-Conditioner” (Attorney Docket No. SHPR-01041US1);
U.S. patent application Ser. No. 10/074,207, filed Feb. 12, 2002, entitled “Electro-Kinetic Air Transporter-Conditioner Devices With Interstitial Electrode” (Attorney Docket No. SHPR-01041USN);
U.S. Pat. No. 6,749,667, issued Jun. 15, 2004, entitled “Electrode Self-Cleaning Mechanism For Electro-Kinetic Air Transporter-Conditioner Devices” (Attorney Docket No. SHPR-01041UST);
U.S. patent application Ser. No. 60/590,688, filed Jul. 23,2004, entitled “Air Conditioner Device With Removable Driver Electrodes” (Attorney Docket No. SHPR-01361USA);
U.S. patent application Ser. No. 10/625,401, filed Jul. 23,20043, entitled “Electro-Kinetic Air Transporter And Conditioner Devices With Enhanced Arcing Detection And Suppression Features” (Attorney Docket No. SHPR-01361USB);
U.S. patent application Ser. No. 60/590,735, filed Jul. 23,2003, entitled “Air Conditioner Device With Variable Voltage Controlled Trailing Electrodes” (Attorney Docket No. SHPR-01361USG);
U.S. patent application Ser. No. 60/590,960, filed Jul. 23,2003, entitled “Air Conditioner Device With Individually Removable Driver Electrodes” (Attorney Docket No. SHPR-01361USQ);
U.S. patent application Ser. No. 60/590,445, filed Jul. 23, 2003 entitled “Air Conditioner Device With Enhanced Germicidal Lamp” (Attorney Docket No. SHPR-01361USR);
U.S. patent application Ser. No. 11/004,397, filed Dec. 3,2004, entitled “Enhanced Germicidal Lamp” (Attorney Docket No. SHPR-01361USY);
U.S. patent application Ser. No. 10/717,420, filed Nov. 19,2003, entitled “Electro-Kinetic Air Transporter And Conditioner Devices With Insulated Driver Electrodes” (Attorney Docket No. SHPR-01414US1);
U.S. patent application Ser. No. 11/007,734 filed Dec. 3, 2004, entitled “Electro-Kinetic Air Transporter and Conditioner Devices with Insulated Driver Electrodes” (Attorney Docket No. SHPR-01414US3);
U.S. patent application Ser. No. 11/006,344, filed Dec. 7, 2004, entitled “Air Conditioner Device With 3/2 Configuration And Individually Removable Driver Electrodes” (Attorney Docket No. SHPR-01414US4);
U.S. patent application Ser. No. 11/007,395, filed Dec. 3, 2004, entitled “Air Conditioner Device With Removable Driver Electrodes” (Attorney Docket No. SHPR-01414US5);
U.S. patent application Ser. No. 11,007,556, filed Dec. 3, 2004, entitled “Air Conditioner Device With Removable Driver Electrodes” (Attorney Docket No. SHPR-01414US6);
U.S. patent application Ser. No. ______ , filed Dec. 3, 2004, entitled “Air Conditioner Device With Removable Driver Electrodes” (Attorney Docket No. SHPR-01414US7);
U.S. patent application Ser. No. 11/003,671 filed Dec. 3,2004, entitled “Air Conditioner Device With Variable Voltage Controlled Trailing Electrodes” (Attorney Docket No. SHPR-01414US8);
U.S. patent application Ser. No. 11/006,344, filed Dec. 3, 2004, entitled “Air Conditioner Device With Individually Removable Driver Electrodes” (Attorney Docket No. SHPR-01414US9);
U.S. patent application Ser. No. 11/003,032, filed Dec. 3, 2004, entitled “Air Conditioner Device With Enhanced Germicidal Lamp” (Attorney Docket No. SHPR-01414USA);
U.S. patent application Ser. No. 11/003,516, filed Dec. 3, 2004, entitled “Air Conditioner Device With Removable Driver Electrodes” (Attorney Docket No. SHPR-01414USB);
U.S. patent application Ser. No. ______ filed Jan. 25,2005, entitled “Electrostatic Precipitator With Insulated Driver Electrodes” (Attorney Docket No. SHPR-01421US0);
U.S. patent application Ser. No. ______ filed ______ ,entitled “Air Conditioner Device With Ozone-Reducing Agent Associated With An Electrode Assembly” (Attorney Docket No. SHPR-01421US1);
U.S. patent application Ser. No. ______ filed ______ ,entitled “Air Conditioner Device With A Temperature Conditioning Device Having A Rechargeable Thermal Storage Mass” (Attorney Docket No. SHPR-01421US2);
U.S. patent application Ser. No. ______ filed ______ ,entitled “Air Conditioner Device With A Temperature Conditioning Device Having A Thermoelectric Heat Exchanger” (Attorney Docket No. SHPR-01421US3);
U.S. patent application Ser. No. 10/774,759 filed Feb. 9,2004, entitled “Electrostatic Precipitators With Insulated Driver Electrodes” (Attorney Docket No. SHPR-01436US0); and
U.S. patent application Ser. No. filed Jan. 25,2005, entitled “Air Conditioner Device With Partially Insulated Collector Electrode” (Attorney Docket No. SHPR-01485US0).
The present invention relates generally to devices that electrically transport and/or condition air. More specifically, the present invention relates to a system and method of automatically cleaning such devices.
It is known in the art how to produce an airflow using electro-kinetic techniques, by which electrical power is converted into a flow of air without mechanically moving components. Such systems were described, for example, in U.S. Pat. No. 4,789,801 to Lee (1988), as well as in U.S. Pat. No. 6,176,977 to Taylor et al. (2001), both of which are hereby incorporated by reference. As is described in these patents, an electro-kinetic air transporter and conditioner system typically includes a first set of emitter electrodes and second set of collector electrodes, with each electrode set including one or more electrodes. While the collector electrodes are typically in need of cleaning more often than the emitter electrodes, the emitter electrodes can eventually accumulate a deposited layer or coating of fine ash-like material. It would be useful to provide a mechanism for cleaning the emitter electrodes.
FIGS. 4 illustrates a top view of another emitter electrode cleaning assembly in accordance with one embodiment of the present invention.
The purpose of emitter electrodes (e.g., wire-shaped electrodes), of electro-kinetic air transporter and conditioner systems, is to produce a corona discharge that ionizes (i.e., charges) the particles in the air in the vicinity of the emitter electrodes. Collector electrodes, which typically have an opposite charge as the emitter electrodes, will attract the charged particles to cause the charged particles to collect on the collector electrodes, thereby cleaning the air. The collector electrodes preferably can be removed vertically from a housing (containing the electrodes), manually cleaned, and then returned to the housing. Although the collector electrodes are typically in need of cleaning more often then the emitter electrodes, the emitter electrodes can eventually accumulate a deposited layer or coating of fine ash-like material. Additionally, dendrites present in the air may accumulate on the emitter electrodes. If such deposits (also referred to hereafter as debris) are allowed to accumulate, the efficiency of the system may eventually be degraded. Further, such deposits (i.e., debris) may also cause the device to produce an audible oscillation.
There are various schemes for cleaning the emitter electrodes. In one embodiment, a sheet or strip of electrically insulating material extends from abase that is associated with the collector electrodes. When the collector electrodes are vertically removed from a top of the housing (and when also returned to the housing), the insulating material scrapes against the emitter electrodes, thereby frictionally cleaning the emitter electrodes. In another embodiment, beads or bead-like mechanisms can be used to clean the emitter electrodes. In particular, the beads have a channel through which the wire-like emitter electrodes extend. By rotating the housing upside down, gravity causes the beads to slide along the emitter electrodes to frictionally clean the emitter electrodes. Additional details are provided in the '417 patent and the '193 application, both of which are incorporated by reference.
The present system is preferably powered by an AC-DC power supply that is energizable or excitable using switch S1. Switch S1, along with the other user- operated switches such as a control dial 144, are preferably located on or near a top 103 of the housing 102. Additionally, a boost button 116, as well as one or more indicator lights 118, are alternatively located on the housing 102. The whole system is self-contained in that other than ambient air, nothing is required from beyond the housing 102, except perhaps an external operating voltage, for operation.
A user-liftable handle member 142 is shown affixed to the collector electrodes 122, which normally rest within the housing 102. The housing 102 also encloses the emitter electrodes 112 and, in one embodiment, the driver electrodes 132. In one embodiment, the collector electrodes 122 and/or the driver electrodes 132 are removable out of the housing 102 while the emitter electrodes 112 preferably remain within the housing 102. As is evident from
During operation of the device 100, the high voltage generator 140 produces a high voltage potential difference between the emitter electrodes 112 and the collector electrodes 122. For example, the voltage to the emitter electrodes 112 is +6 KV, while the voltage to the collector electrodes 122 is −10 KV, thereby resulting in a 16 KV potential difference between the emitter electrodes 112 and collector electrodes 122. This potential difference produces a high intensity electric field that is highly concentrated around the emitter electrodes 112. Other voltage arrangements are also likely, as explained in the Ser. No. 10/717,420 application, which is incorporated by reference. More specifically, a corona discharge takes place from the emitter electrodes 112 to the collector electrodes 122 thereby producing charged ions. Particles (e.g., dust particles) in the vicinity of the emitter electrodes 112 are charged by the ions. The charged ions are repelled by the emitter electrodes 112 and are attracted to and collected by the collector electrodes 122.
The loop 201 preferably forms two individual emitter wires 208 which are upstream of the leading edges of the collector electrodes 206. In another embodiment, the loop 201 is positioned such that the emitter wires 208 are located downstream of the leading edges of the collector electrodes 206. It should be noted that although only one loop 201 is shown in
The emitter electrode wire 208 is preferably electrically connected to a positive terminal of the voltage source 140 (
As shown in
As shown in
As shown in
As previously discussed, the collector electrodes 206 are removable from the housing 102 (
The operation for cleaning the emitter electrode wire 208 will now be discussed. In one example, the user removes the collector electrode assembly 205 from the housing, whereby the vertical movement of the assembly 205 does not operate the gear assembly 203 due to the one-way pawl gear 218. In the example, as the collector electrode assembly 205 is inserted into the housing, the drive rack 220 catches and meshes with the gear 218. The downward movement of the collector assembly 205 and drive rack 220 in the vertical direction, as shown by the arrows, causes the meshed gear 218 as well as gear 214 to rotate about the shaft 224 in a counterclockwise direction. Since the gear 214 in the example is meshed with the intermediate gear 212, the counter-clockwise rotation of the gear 214 causes the intermediate gear 212 to rotate about its shaft 224 in the clockwise direction, as shown by the arrows. In addition, since the intermediate gear 212 is meshed with the top pulley 210 in the example, the clockwise rotation of the intermediate gear 212 causes the pulley 210 to rotate about its shaft 224 in the counter-clockwise direction, as shown by the arrows in
In the embodiment shown in
Unlike the emitter electrode wires in the embodiment shown in
As the collector electrode assembly 705 is moved vertically downward, the drive rack 712 first meshes with the intermediate gear 716, whereby the downward movement of the drive rack 712 causes the intermediate gear 716 to rotate clockwise about its shaft 724. The clockwise rotation of the intermediate gear 716 causes the meshed pulley 710 to rotate counter-clockwise about its center, thereby causing the emitter electrode wire 708 to move along the loop 701, as shown by the arrows in
In one embodiment, the upward vertical movement of the collector electrode assembly 705 (i.e. removal of the assembly 705 from the housing) also actuates the intermediate gear 716 and thus rotates the pulleys 710 to move the wire 708 along the loop 701. In another embodiment, the intermediate gear is a one-way gear which is actuated only when the collector electrode assembly 705 moves in one direction. In one embodiment, the collector electrode assembly 705 includes a drive gear on either the top or bottom mounting bracket. In another embodiment, the gears can be configured to rotate the pulleys 710 in the same direction when the collector electrode assembly 705 is inserted and removed from the housing 102. In another embodiment, the collector electrode assembly 705 is removable and insertable in a horizontal, instead of vertical, direction, whereby the lateral motion of the collector electrode assembly 705 causes the gear assembly to actuate to cause emitter electrode wire 708 to move along the loop 701. It is also contemplated that the system can be configured to move the emitter wire 708 along the loop 701 when only the driver electrodes are removed from the housing.
In accordance with one embodiment of the present invention, the scraper contact 404 is made from a sheet or strip of flexible insulating material, such as those marketed under the trademarks MYLAR and KAPTON. Alternatively, the scraper is made of a non-flexible material. The scraper 404 is preferably made of an insulating material includes a first end 402 prefeably attached to the housing 102 (
Referring to
The outer surface 504 of the cleaning wheel 502 is preferably rough or bristled in one embodiment, so that the cleaning wheel 502 able to clean debris from the electrode 508 as the electrode 508 moves in relation to the wheel 502. Friction between the surfaces of the emitter wire 508 and the cleaning wheel 502 can cause the cleaning wheel 502 to rotate when the emitter wire 508 moves along the loop. Accordingly, there is no need for a separate motor or other mechanism for rotating the cleaning wheel 502, although one can be included. It is also possible that the rotation of the cleaning wheel 502 could be used to cause one of the pulleys 510 to rotate, thereby causing the emitter wire 508 to move along the loop. It should be noted that the cleaning mechanism discussed above are in no way limiting and other mechanisms and devices are contemplated which clean the emitter wire. One possible cleaning mechanism is one or more beads or bead-like mechanisms having a channel which the emitter wire passes through, whereby the emitter wire is cleaned by scraping against the inside walls of the channel when the bead and wire are moved in relation to one another. More details of the bead are discussed in the '417 patent referenced above.
Referring now to
In another embodiment, the pulleys themselves include a frictional surface in contact with the emitter wire such that the frictional surface cleans debris from the emitter wire as the wire is along the loop. For example, one or more of the pulleys include a felt or other soft material along the interior radial surface which cleans the wire when the wire comes into contact with the interior radial surface.
A DC Power Supply 814 is designed to receive the incoming nominal 110VAC and to output a first DC voltage (e.g., 160VDC) for the high voltage generator 140. The first DC voltage (e.g., 160VDC) is also stepped down through a resistor network or transformer to a second DC voltage (e.g., about 12VDC) that is supplied to a micro-controller unit (MCU) 830. The MCU 830 can be, for example, a Motorola 68HC908 series micro-controller. In accordance with an embodiment of the present invention, the MCU 830 monitors the stepped down voltage (e.g., about 12VDC), which is labeled the AC voltage sense signal in
The high voltage pulse generator 140 is coupled between the emitter electrode wire 208 and the collector electrode 206 (
When driven, the generator 140 receives the low input DC voltage (e.g., 160VDC) from the DC power supply 814 and the low voltage pulses from the MCU 830, and generates high voltage pulses of preferably at least 5 KV peak-to-peak with a repetition rate of about 20 to 25 KHz. Preferably, the voltage multiplier 818 outputs about 6 to 9 KV to the emitter array 110, and about 12 to 18 KV to the collector array 120. It is within the scope of the present invention for the voltage multiplier 818 to produce greater or smaller voltages. The high voltage pulses preferably have a duty cycle of about 10%-15%, but may have other duty cycles, including a 100% duty cycle.
The MCU 830 receives an indication of whether the control dial 144 is set to the LOW, MEDIUM or HIGH airflow setting. The MCU 830 controls the pulse width, duty cycle and/or frequency of the low voltage pulse signal provided to switch 826 to control the airflow output, based on the setting of the control dial 114. To increase the airflow output, the MCU 830 increases the pulse width, frequency and/or duty cycle. Conversely, to decrease the airflow output rate, the MCU 830 reduces the pulse width, frequency and/or duty cycle. In accordance with an embodiment, the low voltage pulse signal (provided from the MCU 830 to the high voltage generator 140) has a fixed pulse width, frequency and duty cycle for the LOW setting, another fixed pulse width, frequency and duty cycle for the MEDIUM setting, and a further fixed pulse width, frequency and duty cycle for the HIGH setting.
The MCU 830 can also include various timing and maintenance features as described in detail in U.S. application Ser. No. 11/003,671 incorporated by reference herein. The MCU 830 can also detect arcing in various manners as described in detail in U.S. application Ser. No. 10/625,401 incorporated by reference herein.
Many of the above-described features of the present invention also relate to cleaning emitter electrodes of electro-kinetic air transporter and conditioner devices. Collectively, electro-kinetic air transporter and conditioner devices and ESP devices are referred to simply as air conditioning devices, since both types of devices condition the air by electronically cleaning the air and producing ions. More detail regarding electro-kinetic air transporter devices are described in U.S. Application (SHPR-01421US0) incorporated by reference herein.
The foregoing descriptions of the preferred embodiments of the present invention have been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Modifications and variations maybe made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims. Embodiments were chosen and described in order to best describe the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention, the various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
This Patent Application claims priority under 35 U.S.C. 119(e) of the co-pending U.S. Provisional Patent Application Ser. No. 60/545,698, filed Feb. 18,2004, entitled, “Electro-Kinetic Air Transporter And/Or Conditioner Devices With Features For Cleaning Emitter Electrodes,” (Attorney Docket No. SHPR-01430US0) and U.S. Provisional Patent Application Ser. No. 60/579,481, filed Jun. 14,2004, entitled, “Air Transporter And/Or Conditioner Devices With Features For Cleaning Emitter Electrodes” (Attorney Docket No. SHPR-01430US2), both of which are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60545698 | Feb 2004 | US | |
60579481 | Jun 2004 | US |