The present invention relates to an air treatment method and apparatus. More specifically, the invention relates to an air treatment apparatus which may comprise a flexible electrode assembly and an air ducting system. The apparatus may further comprise a power source. The electrode assembly is made of flexible materials and used to generate low power electrical discharge plasma for inactivating health threatening airborne pollutants present in indoor air and removing pollutants from the same. The present invention also provides a method of using such an apparatus in air treatment applications for removal of health threatening airborne pollutants.
In a further aspect, the present invention also provides an air treatment apparatus for removal of health threatening airborne pollutants, which may include pathogens, from an airflow, the air treatment apparatus comprising an apparatus having a pre-determined geometry the apparatus defining an area of generally circular fluid motion, rotating in the same direction, the apparatus having an air inlet for entry of airflow into the apparatus, and the air inlet being configured to facilitate establishing the generally circular fluid motion, and means being provided within the apparatus to inactivate the health threatening airborne pollutants and an exit from the apparatus from which purified outward air will exit. Ideally, in a preferred embodiment, the apparatus having a defined geometry comprising the above defined flexible electrode assembly, with the flexible electrode assembly provided about the walls of the apparatus such that the airflow is directed towards the walls of the apparatus such that the health threatening airborne pollutants are urged towards and into the inactivation zone created by the plasma discharged from the outward facing conductive layer of the flexible electrode assembly.
In another aspect, the present invention relates to an air treatment device comprising a plasma generating flexible electrode electrostatic precipitator assembly for air disinfection and pollution control wherein the plasma generating flexible electrode electrostatic precipitator assembly comprises the flexible electrode assembly configured for generating low power electrical discharge plasma and for inactivating pathogens in the airflow. In yet a further embodiment, the inactivation zone can be created from use of an ultraviolet light source alone or in combination with the plasma generating flexible electrode.
Health threatening airborne pollutants may be subdivided into three groups; (a) airborne pathogens comprising any organism that causes disease that spreads throughout the environment via the air; (b) airborne allergens comprising any substance that, when ingested, inhaled, or touched, causes an allergic reaction and, (c) airborne volatile organic compounds (VOC) comprising any product that is designed to be sprayed at high pressure in the form of tiny particles that remain suspended in the air. The last category includes many cleaning chemicals, hair spray, various types of primer, and fuels such as gasoline and kerosene, as well as other household, beauty, or hobby products. Some fabrics, particularly those recently manufactured, also contribute to indoor airborne VOCs when they outgas, or leak out chemicals in gaseous form, over time.
Airborne pollutants can build up significantly in indoor environments with the result that the air that we breathe may become contaminated. Considering that on average humans spend approximately 90% of their time in an indoor environment, it will be appreciated that the removal of pollutants from indoor air is of importance to reduce allergies and prevent infection transmission, such as sick building syndrome.
Existing state of the art technologies for the control of airborne pathogens can be categorized as: (a) airborne trapping systems or filters, (b) airborne inactivation systems and, (c) some combination of the above.
Existing airborne inactivation technologies also include those that make use of chemicals, UV radiation and plasma discharge by-products.
Examples of chemical inactivation include the use of antimicrobial vaporizers, typically ozone or hydrogen peroxide. While these systems are effective, they are also disruptive, requiring the evacuation of indoor space to be treated and therefore are not suitable for use under normal living circumstances.
Alternative inventions for the purification of air comprise the use of ultra violet light (UV) emission to kill airborne bacteria. For example, international publication No. WO 2003/092751, describes a device in which a fluid (e.g. air) is passed through an array of UV lamps. It is appreciated that in this solution the one and only inactivation mechanism is via UV radiation.
It is also known to use of plasma radicals for sterilisation of air filter medium; see for example US patent publication No. 2004/0184972 A1. In this prior art document, it is proposed that an upstream plasma discharge can generate active radicals which flow upstream to a medium filter and kill any bacteria or virus trapped by the filter.
In such systems which rely on plasma discharge, the design and configuration of the plasma generator are of particular importance. The teachings disclosed in the present document offers an electrode assembly for plasma generation which can be used for air disinfection and pollution control.
Accordingly, a first embodiment of the application provides a flexible electrode assembly for an air treatment device as detailed in claim 1. Accordingly, in one aspect, the present invention provides a flexible electrode assembly for an air treatment device comprising:
An advantage of the flexible electrode of the present invention is that it can take the form of any desired shape and can conform to the shape of an apparatus into which it is inserted such as the inside of a duct or a ducting section including an apparatus having a generally conical geometry comprising a cylindrical section and a conical section.
In another aspect, the present invention also provides an air treatment system and air treatment apparatus as detailed in the independent claim(s). Advantageous embodiments are provided in the dependent claims.
In a further aspect, the present invention also provides an air treatment apparatus for removal of health threatening airborne pollutants, which may include pathogens, from an airflow, the air treatment apparatus comprising an apparatus having a pre-defined geometry; the apparatus defining an area of generally circular fluid motion, rotating in the same direction, the apparatus having an air inlet for entry of airflow into the apparatus, and the air inlet being configured to facilitate establishing the generally circular fluid motion, and means being provided within the apparatus to inactivate the health threatening airborne pollutants and an exit from the apparatus from which purified outward air can exit. Ideally, in a preferred embodiment, the exit from the apparatus is coplanar with the plane of the direction of the swirling airflow in the apparatus; but the outward airflow direction is opposite from the inward swirling airflow direction. Other features are included in the dependent claims.
An advantage of the air treatment apparatus of the invention is that the spiralling airflow ensures that the pathway of any airborne pollutant material through the apparatus is relatively long so that the time spent in the apparatus is also longer than would be the case with a direct inward airflow longitudinally through the apparatus; hence the number of times that an airborne pollutant material will be urged into the inactivation zone is increased relative to a linear inward airflow. A further advantage is that the outward airflow out of the apparatus then removes the inactivated airborne pollutant material so that no build-up of material occurs inside the cyclone geometry apparatus.
In one preferred embodiment, the present invention relates to an air treatment device comprising a plasma generating flexible electrode and electrostatic precipitator assembly for air disinfection and pollution control wherein the plasma generating flexible electrode electrostatic precipitator assembly comprises the flexible electrode assembly configured for generating low power electrical discharge plasma.
In one aspect, the present invention provides air treatment apparatus comprising:
It is to be understood that throughout this patent specification, the term, “inactivation zone” refers to a zone in which plasma is released and is effective to inactivate airborne pollutant material including pathogens. Such airborne pollutant material (i.e. airborne pollutants), which can be health threatening, may be subdivided into three groups: (a) airborne pathogens comprising any organism that causes disease that spreads throughout the environment via the air; (b) airborne allergens comprising any substance that, when ingested, inhaled, or touched, causes an allergic reaction and, (c) airborne volatile organic compounds (VOC) comprising any product that is designed to be sprayed at high pressure in the form of tiny particles that remain suspended in the air. The plasma generated by the plasma generator in the air treatment apparatus of the present invention is effective to inactivate any of the airborne pollutant materials as defined in subdivisions (a) to (c).
Thus, the air treatment apparatus is configured to attract the charged airborne particles into the inactivation zone; this is not the same as trying to attract all the charged particles onto the surface of the plasma generator as in fact, such would be undesirable as it could interfere with the effective operation of the plasma generator if all the charged particles were on the surface of the plasma generator.
The air treatment apparatus of the present invention comprises a plasma generator, preferably a flexible electrode assembly for generating plasma, which is configured to operate at a power density less than 1 W/cm2 to operably generate a plasma discharge.
In the preferred embodiment, the plasma generator comprises a flexible electrode assembly, flexible electrode assembly which is configured to operate at a power density less than 1 W/cm2 to operably generate a plasma discharge circumferentially about a longitudinal axis of the flexible electrode assembly. It is to be understood that although the flexible electrode assembly may be provided on at least a portion of the inside walls of the air treatment apparatus, preferably, circumferentially about at least a portion of the inside walls, but that the flexible electrode assembly can be of any desired dimensions that is sufficient to provide an inactivation zone in the region of the walls of the apparatus. The inactivation zone extends outwardly from the flexible electrode assembly by up to approx. 1 cm. It is not necessary for the airborne pollutant material to collide with the flexible electrode assembly in order for the airborne pollutant material to be inactivated; it is sufficient for the airborne pollutant material to enter into the inactivation zone. Ideally, in the air treatment apparatus of the present invention, airborne pollutant material will enter into the inactivation zone multiple times due to the rotating, swirling motion of the inward airflow. This inward airflow is directed into the air treatment device through an inward airflow port which is configured to establish cyclonic airflow. The airflow port comprises a plurality of walls which cooperate to establish cyclonic airflow.
Most preferably, the plasma generator is configured to be operated at a power density in the range from 0.1 to 0.5 W/cm2. This is a relatively low power density for plasma generation and is effective for creating an inactivation zone about the plasma generator.
The present application will now be described with reference to the accompanying drawings in which are shown, by way of example only, a number of aspects and embodiments of the present invention:
The present teachings relate to an air treatment apparatus or device comprising a flexible electrode assembly which is used with a ducting system to operably generate a plasma for treatment of air passing through the ducting system. The apparatus may further comprise a power source which is coupled to the flexible electrode assembly to provide power which is used in the generation of a plasma. In addition, an impeller may be required to force air through the ducting system. By providing such a combination of elements, it is possible, when power is applied to the electrode assembly, to generate a low power plasma discharge field to effectively sterilise air of micro-organisms or pathogens or oxidise organic airborne contaminants and particles that are passing through the ducting system.
In an alternative embodiment, the present disclosure relates to an air treatment apparatus or device comprising a ultraviolet (UV) light source which is used with a ducting system for treatment of air passing through the ducting system. In yet a further alternative embodiment, the present disclosure relates to an air treatment apparatus or device comprising a flexible electrode assembly in combination with a UV light source used with a ducting system to operably generate a plasma and UV rays for treatment of air passing through the ducting system.
The power source may be a high voltage generator with voltage output in the range 1 kV to 10 kV amplitude. The high voltage generator may be of continuous (DC) or alternating (AC) current type. An exemplary embodiment is driven by an AC power source. In this embodiment the voltage source frequency is the same as mains frequency, i.e. 50 to 60 Hz depending on the geographical region. In an alternative embodiment the frequency of the power supply may be in the kilo-Hertz range; e.g. 1 kHz to 250 kHz. Further alternative embodiments may be fitted with AC power supplies with modulation frequency in the range above or below those listed above.
The configuration of the flexible electrode assembly is best described with reference to
The electrodes each comprise a conductive layer. A first conductive layer 102 is patterned as a series of thin rows of electrically conducting tracks leaving a narrow gap between the rows. The second conductive layer 203 (shown in
A plasma discharge is generated by applying power to the pair of electrodes comprising the first conductive layer 102 and the second conductive layer 203. The applied power sustains either a DC or an AC discharge from the first surface 102 of the flexible electrode assembly 100. The plasma generation in the present teachings is of a dielectric barrier discharge (DBD) type with both electrodes insulated from one another by the dielectric layer 101. The configuration and positioning of the first 102 and second 203 conductive layers ensures that the plasma discharge is generated and sustained on the first layer 102 of the electrode assembly 100.
Dielectric-barrier discharge (DBD) is an electrical discharge between two electrodes i.e., the first layer 102 and the second layer 203 separated by an insulating dielectric barrier i.e., the dielectric sheet 101. Known DBD devices are typically planar, using rigid parallel plates separated by a dielectric or cylindrical, using coaxial plates with a dielectric tube between them. However, by using flexible materials for the construction of the electrode assembly 100 in accordance with the present teachings, one can assemble an electrode pair with flexible characteristics, thereby allowing the device to be shaped to geometries other than planar or cylindrical arrangements.
The dielectric layer 101 is made of a suitable insulating material with a high dielectric strength, which can be chosen as appropriate by those skilled in the art. In an exemplary arrangement of the present teachings, the dielectric insulating layer 101 comprises a polyimide insulating sheet with dielectric strength greater than 100 kV/mm.
In this exemplary arrangement, the electrode assembly 100 consists of a polyimide sheet with a copper sheet on one side (acting as the second conductive layer 203) and copper tracks on the opposite side (acting as the first conductive layer 102).
The use of polyimide with copper attached thereto is well known for manufacturing printed circuit boards. In particular such configuration may generally constitute a flexible printed circuit board. It is appreciated that such flexible circuits are assembled/manufactured in a planar form and become a bendable or flexible sheet/board arising out of the physical characteristics of the materials used. It is also noted that these bendable boards are typically designed to allow flexibility where traditional rigid printed circuit boards are not suitable; e.g. when conforming to non-planar enclosures or surfaces is required. As such these flexible printed circuit boards are used in similar applications as their rigid counterparts including low voltage and low current usage but heretofore have not been used in the context of a plasma generator.
The inventors of the present application have appreciated that these flexible boards can be configured for use as an electrode assembly or electrode assemblies for generating medium to high power plasma discharges; i.e. discharges where power per unit area is in excess of 1 W/cm2. However, under such operating conditions, the lifetime of such flexible printed circuit boards tends to be reduced due to the high voltage and power applied which may cause short circuiting on the board and burn out the tracks due to high current. Therefore, it is important that the power provided to the flexible printed circuit boards in accordance with the present invention is carefully regulated.
According to the teachings of the present invention, the power applied to the electrode assembly 100 by the power source is to be low enough to limit the amount of ionization of the air in the vicinity of the electrode assembly 100 and to keep low electrical stress on the PCB to ensure long operating lifetimes. In an exemplary aspect, the power per unit area applied to the electrode is below 100 mW/cm2. At this power level, the ionization generated by the system is of the type of a dark or Townsend discharge. As is known to those skilled in the art, this discharge mode is characterized by a combination of low discharge currents (in the range of micro amperes or lower) and no radiative emission, hence the term dark. The generation of radicals in this discharge mode is also limited, which is advantageous in order to maintain a low level of anti-pathogenic agents released by the system of the present invention. The ionized plasma is therefore not of a glow discharge mode where the plasma current and radical and other plasma species concentration is significantly higher resulting in a visible glow, electrode heating and damage and significant release of toxic radicals.
In another aspect, the electrode assembly 100 may include an additional insulating layer between the first conducting layer 102 and the dielectric layer 101. Additionally or alternatively, an insulating layer may be placed between the second conductive layer 202 and the dielectric layer 101. Such an additional layer(s) serves to protect the dielectric layer 101 from external sources of contamination or degradation. The additional protective layer(s) also reduces the possibility of arcing between the layers acting as electrodes and/or nearby conductors.
Although a semi-circular shape is shown, a plurality of shapes can be formed using the flexible electrode assembly 100. In a preferred embodiment, the shaped formed using the flexible electrode assembly 100 comprises a conical geometry.
It will be understood by those skilled in the art that power is provided from a power supply to the flexible electrode assembly 100. The exact nature of the connection (e.g., wiring) between the flexible electrode assembly 100 and the power supply can be chosen as appropriate and it is not necessary that the power supply and the electrode assembly 100 be co-located. A transformer (not shown) may also be used between the power supply and the flexible electrode assembly 100 to provide high-voltage alternating current.
The first 102 and second 203 conductive layers maintain direct contact around their respective total surface areas with the dielectric layer 101. This ensures that there are no air pockets within the electrode assembly 100 where elevated levels of plasma can build up during generation of plasma.
In the preferred aspect of the present teachings, the continuous uniform material of second conductive layer 203 ensures no plasma is sustained on the second layer 203 of assembly 100. On the other hand, the rows of wire separated by gaps in the first conductive layer 102 allows high electric fields to build up in the gaps due to the high voltage potential applied between the first conductive layer 102 and second 203 conductive layers. This electric field ionizes the gas in the vicinity of the first conductive layer 102 initiating and sustaining an atmospheric plasma discharge. Said plasma discharge is limited to the first surface 102. Furthermore, said plasma discharge generates an inactivation zone above the first conductive layer 102 of the electrode assembly 100 where the plasma field, radiation and active species act as anti-pathogenic agents for the air passing the flexible electrode assembly 100.
An inactivation zone is a zone in which plasma is released and is effective to inactivate airborne pollutant material entrained in the airflow. Health threatening airborne pollutants may be subdivided into three groups: (a) airborne pathogens comprising any organism that causes disease that spreads throughout the environment via the air; (b) airborne allergens comprising any substance that, when ingested, inhaled, or touched, causes an allergic reaction and, (c) airborne volatile organic compounds (VOC) comprising any product that is designed to be sprayed at high pressure in the form of tiny particles that remain suspended in the air.
It will be understood by those skilled in the art that replacing the second conductive layer 203 (i.e., a sheet of conductive material) with a layer similar to that of the first conductive layer 102 (having rows of wire separated by gaps) will result in a plasma discharge being generated and sustained on the second side of the flexible electrode assembly 100 as well as on the front side. This may be desirable under some circumstances and/or applications of the present teachings and it is not intended to limit the present teaching to generation of a plasma on one side only of the electrode assembly.
The flexible electrode assembly 100 should preferably be oriented in a manner that airflows in parallel direction to the direction of the assembly so as to maximise the time that the air is exposed to the plasma that is generated by the assembly. By providing a flexible assembly the inactivation zone that is generated by the electrode assembly does not need to be planar as the assembly may adopt various curved geometries. In particular, due to the flexible nature of the electrode assembly 100 of the present teachings, a plurality of configurations are possible.
A number of means known to those skilled in the art could be chosen to induce airflow through the conduit 504, for example, an impeller may be used.
The plasma concentration in the inactivation zone, created by the plasma discharged from the first layer 102 of the flexible electrode assembly 100, is be sufficient to effectively inactivate airborne pollutant material entrained in the airflow. Furthermore, the concentration of plasma should decay sufficiently outside the inactivating zone so that the concentration of any anti-pathogenic agents created by the plasma discharge in the cleaned air expelled from the conduit 504 regions of the apparatus is at a physiologically acceptable level.
Air enters the conduit 706 in the direction of arrow 707, flows into a rectangular section 708 of the conduit 706 fitted with a plurality of flexible electrode assemblies 100. The shape of said section 708 is such that air flowing past the electrode assemblies 100 shall do so within one centimetre from the first conductive layer 102 of the electrode assemblies present in the section 708. This means that the electrode assemblies at the top and bottom interior surfaces of the rectangular section 708 cannot be more than one centimetre apart. However, the distance between the sides can be much more than one centimetre.
The arrangement of
Referring now to
It will be appreciated that the voltage and current parameters required to achieve a dielectric barrier discharge will depend principally on the nature of the dielectric used. In general, operating voltages below 1 kV are not practical, and preferably, an operating voltage in the range from 1 to 6 kV is provided between the first layer and the second layer of the flexible electrode assembly, most desirably, a voltage of from 3 to 5 kV is provided between the first layer and the second layer of the flexible electrode assembly, for example about 4 kV. It will be appreciated that the current required to maintain the dielectric barrier discharge is significantly less than that required to initiate it. The current (and hence the power) of plasma generator units is normally expressed in terms of the starting current. There should be used a (starting) current in the range from 1 to 10 mA, preferably at least 3 mA. The power of the plasma generator will, of course, depend on the voltage and current combination. The power should generally be not more than 50 watts, and is preferably at least 4 watts. Typically, the power is in the range from 10 to 40 watts. These power levels have in particular been found to be convenient where the plasma generator is used as part of an apparatus unit having a conduit volume of the order of 0.02 to 1.0 m3.
Referring now to
The embodiment shown in
Referring to
Thus the arrangement has particular advantage as spiralling pattern of the inward airflow as indicated by the arrows 1306 ensures that airborne pollutant material including pathogens in the airflow will be urged towards the walls of the cylindrical section and the conical section at least once, and more likely, several times during the travel in the spiralling airflow due to the action of centrifugal forces. Therefore, the airborne pollutant material will be urged into the inactivation zone in the region of the plasma generating flexible electrode assembly 1301 provided about the walls of the cyclone geometry. A further advantage of the air treatment apparatus is that the spiralling airflow ensures that the pathway of any airborne pollutant material through the apparatus is relatively long so that the time spent in the apparatus is also longer than would be the case with a direct inward airflow longitudinally through the apparatus; hence the number of times that an airborne pollutant material will be urged into the inactivation zone is increased relative to a linear inward airflow. A further advantage is that the outward airflow out of the apparatus then removes the inactivated airborne pollutant material so that no accumulation of material occurs inside the cyclone geometry apparatus.
Referring now to the alternative embodiment shown in
Referring now to
It is to be understood that although the flexible electrode assembly is shown in this embodiments in
An advantage of the air treatment apparatus of the invention is that the spiralling airflow ensures that the pathway of any airborne pollutant material through the apparatus is relatively long so that the time spent in the apparatus is also longer than would be the case with a direct inward airflow longitudinally through the apparatus; hence the number of times that an airborne pollutant material will be urged into the inactivation zone is increased relative to a linear inward airflow. A further advantage is that the outward airflow out of the apparatus then removes the inactivated airborne pollutant material so that no accumulation/build-up of material occurs inside the cyclone geometry apparatus.
Referring now to
It is to be understood that the flexible electrode assembly can be extended from the cylindrical section into the tapered section of the cyclonic air treatment device. Indeed, the flexible electrode assembly may, in an alternative embodiment, not shown in the drawings, be provided in the conical section of the apparatus rather than in the cylindrical section.
Indeed, the skilled person will understand that the provision of the flexible electrode about the inner walls of the cyclonic air treatment device can take several forms as the function of the flexible electrode assembly is to generate plasma for effective inactivation of airborne particles that are carried in the airflow into the cyclonic air treatment device; the preferred arrangement is to have the flexible electrode assembly provided about at least a portion of the walls of the apparatus so that the inactivation zone is created about the walls as that is where the centrifugal forces will urge the inward airflow to travel and hence airborne pollutant materials will be urged into the inactivation zone. Hence the provision of the plasma-generating flexible electrode assembly about at least a portion of the walls enables cooperation between the action of the inward airflow pattern and the inactivation zone to ensure multiple entries of airborne pollutant material into the inactivation zone.
Referring to
Referring to
Referring now to
In the embodiment shown in
The inactivation zone is a zone in which plasma is released and is effective to inactivate airborne pollutant material including pathogens. Such airborne pollutant material (i.e. airborne pollutants), which can be health threatening, may be subdivided into three groups: (a) airborne pathogens comprising any organism that causes disease that spreads throughout the environment via the air; (b) airborne allergens comprising any substance that, when ingested, inhaled, or touched, causes an allergic reaction and, (c) airborne volatile organic compounds (VOC) comprising any product that is designed to be sprayed at high pressure in the form of tiny particles that remain suspended in the air. The plasma generated by the plasma generator in the air treatment apparatus of the present invention is effective to inactivate any of the airborne pollutant materials as defined in subdivisions (a) to (c).
Thus, the air treatment apparatus 2000 is configured to attract the charged airborne particles into the inactivation zone; this is not the same as trying to attract all the charged particles onto the surface of the plasma generator as in fact, such would be undesirable as it could interfere with the effective operation of the plasma generator if all the charged particles were on the surface of the plasma generator.
The air treatment apparatus 2000 comprises a plasma generator comprising the flexible electrode assembly 2101, which is configured to operate at a power density less than 1 W/cm2 to operably generate a plasma discharge. Most preferably, the plasma generator is configured to be operated at a power density in the range from 0.1 to 0.5 W/cm2. This is a relatively low power density for plasma generation and is effective for creating an inactivation zone about the plasma generator.
It is to be understood that combinations of the means for inactivating the health threatening airborne pollutant materials can be included in the air treatment apparatus of the present invention; so that for instance, in an embodiment of the air treatment apparatus, the plasma generating flexible electrode assembly may be provided about at least a portion of the walls of the cyclone geometry and a UV light may be included in the same embodiment of the apparatus and/or an electrostatic precipitator may also be provided in addition. Thus, the embodiments shown are not to be taken as in isolation from each other but may be combined so as to provide effective treatment of airflow.
Furthermore, at least two such air treatment apparatuses may be provided in series so as to provide an array of air treatment apparatuses with the outward airflow from a first air treatment apparatus then being fed into a second air treatment apparatus as the inward airflow for the second air treatment apparatus to ensure efficient airflow treatment.
Referring now to
Referring to
Referring now to
Referring now to
It will, of course, be understood, that various modifications and alterations are possible within the scope of the present invention, as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1414244 | Aug 2014 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
9076997 | Hirata | Jul 2015 | B2 |
10786593 | Deane | Sep 2020 | B2 |
20030108460 | Andreev | Jun 2003 | A1 |
20040184949 | McEllen | Sep 2004 | A1 |
20070144117 | Park | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
1649923 | Apr 2006 | EP |
9635521 | Nov 1996 | WO |
2004105820 | Dec 2004 | WO |
2005037420 | Apr 2005 | WO |
2008034605 | Mar 2008 | WO |
Entry |
---|
ISR from PCT/EP2015/068605. |
Number | Date | Country | |
---|---|---|---|
20210033293 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15503211 | US | |
Child | 17032076 | US |