The invention relates to an airbag cover hinge having a textile hinge that can be connected both to the airbag cover and to a support carrying the airbag cover.
When an airbag deploys, the airbag cover opens to allow the airbag to expand into the passenger space. The airbag cover hinge serves to guide the airbag cover on opening and to prevent the cover from flying in an uncontrolled manner into the passenger space.
U.S. Pat. No. 7,165,781 discloses an airbag cover hinge of knitted or woven fabric. The forces acting on the airbag cover hinge vary, as a function of the weight of the airbag cover and/or airbag. For example, the heavier the airbag cover or airbag, the greater the forces acting on the hinge. The hinge serves a dual function: first to ensure that the airbag cover opens quickly and easily when the airbag deploys and second, to ensure that the airbag cover does not break free from all restraints, so as to fly into the passenger space and possibly cause injury to someone.
Prior art hinges for airbag cover that are configured as woven fabric or knitted fabric can tear, that is, fail, under unfavorable conditions.
What is needed, therefore, is a hinge for an airbag cover that allows easy opening of the airbag cover upon deployment, yet securely prevents a tearing or loosening of the hinge. What is further needed is such a hinge that is cost-effective to produce.
The invention is an airbag cover hinge that provides a multistage controlled release of the airbag cover. The hinge has a textile base structure. Load-bearing or “stop” threads are integrated as load-absorption threads into the textile base structure, which is a fabric constructed of longitudinal threads and cross threads. The stop threads extend generally parallel to the longitudinal threads and have greater resistance to tearing and a greater length than the longitudinal threads.
The hinge according to the invention integrates two systems, i.e., a first system that tears whenever a predetermined tension is exceeded in order to take up most of the tension, and a second system which allows a defined opening of the airbag cover (opening angle) with a secure hold on the cover.
The textile base structure is advantageously configured as knitted fabric so as to be cost effective and provide optimal handling.
The stop threads are aligned generally parallel to the direction of force that is exerted on the hinge during deployment, and ideally uniformly distributed over the textile base structure, so as to provide an adequate quantity of stop threads, even then, for example, when the hinges are cut or stamped from a larger piece of fabric.
One feasible design is a sequence or repeating array of two longitudinal threads of the textile base structure and a stop thread (load absorption thread), this sequence, however, may be adapted to correspond to the specific configuration of the airbag cover.
In an advantageous embodiment, the textile base structure is configured such that the base structure tears, while the stop threads do not. The stop threads have a greater length than the longitudinal threads and may be incorporated into the textile base structure, for example, in a meandering, zigzag, tubular, arched, corrugated and/or self-overlapping layout, such that the stop threads have a “storage area” that allows the stop threads to expand in length. The portion of the stop threads in the storage area that may be placed substantially transversely and/or longitudinally to the direction of pull.
The hinge according to the invention may be embedded in a two-dimensional textile fabric, such that when deployment forces are exerted on the cover hinge, the textile base structure tears or opens away from the two-dimensional textile fabric, so as to attenuate the deployment forces on the cover to some degree and, at the same time, to define the path of travel for the airbag flap upon opening.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.
a is a schematic illustration of the textile base structure according to the invention.
b illustrates the hinge under tension, with the storage area opening up.
c shows stop and longitudinal threads in the storage area.
d shows the longitudinal threads torn apart and the stop threads holding two parts of the textile base structure together.
e illustrates two thread systems integrated into the textile base structure,
f illustrates the initial opening up of the storage area in the process of airbag deployment.
g illustrates a continuing opening up of the storage area.
h illustrates the final stage of the opening up of the storage area, showing longitudinal threads severed and stop threads functioning as a hinge and holding the two parts of the textile base structure together.
a to
High-strength load-bearing or stop threads 5, such as, for example, dtex 1100, are integrated into this textile base structure 4. The textile base structure 4 itself, comprising the longitudinal threads 3 and cross threads 2, may be constructed of polyester and/or other suitable materials, and particularly, is constructed to have less strength than the stop threads 5, in other words, at least the longitudinal threads 3 are designed to tear at loads that the load-bearing stop threads can withstand.
The hinge 1 further comprises a control means 6 to control the release of the airbag cover 7 during deployment of the airbag. The control means includes stop threads 5 that are incorporated into the textile base structure 4 and also a storage capacity or area 6. The stop threads 5 are aligned generally parallel to the direction of tension acting on the hinge upon deployment, but a portion of the stop threads 5 has a storage capacity that allows the threads 5 to expand in length.
The textile base structure 4 and the control means 6 are shown in
Following actuation of the airbag, the airbag cover 7 opens and the textile base structure 4 incorporated in the vicinity of the airbag cover hinge 1 stretches to such an extent that the longitudinal threads 3 of the textile base structure tear apart. The process of applying load to the hinge is shown schematically in
The total strength of the airbag cover hinge 1 is determined by the number of stop threads 5 and/or their strength properties. i.e., their resistance to tearing. In a textile embodiment, it is possible to create a repeating array across the width of the airbag cover hinge 1 of two longitudinal threads 3 and one stop thread 5, the stop thread being attached to the longitudinal threads of the textile base structure 4. It is also possible, as shown in
The maximal expansion range of the airbag cover hinge 1, i.e., the distance between the portions 4a and 4b of the base structure 4, is defined by the length of the stop threads 5 in the storage area 6. The number and resistance to tearing of the stop threads 5 is selected, such that the stop threads 5 continue to absorb residual forces after the expanded textile base structure 4 has torn (multistage process).
f and 1g show that both the stop threads 5 and the longitudinal threads 3 can have different lengths relative to one another so as to execute dual-stage or multistage load absorption on opening. It is also possible to incorporate stop threads 5 having different lengths and/or strength properties, so as to further enhance the multistage load absorption function of the hinge 1.
In another embodiment, such as the one shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2007 009 058 | Feb 2007 | DE | national |
20 2007 016 718 U | Nov 2007 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
8157289 | Bittner et al. | Apr 2012 | B2 |
Number | Date | Country | |
---|---|---|---|
Parent | 12527703 | US | |
Child | 13605426 | US |