The invention generally relates to an airbag for a vehicle passenger restraint system.
A typical vehicle airbag includes at least one airbag chamber that can be filled with gas and that is provided with at least one outflow device through which gas can escape from the airbag chamber.
One embodiment of the invention relates to an airbag for a vehicle passenger restraint system. The airbag comprises at least one airbag chamber that can be filled with gas and that includes at least one outflow device through which gas can escape from the airbag chamber. The outflow device comprises a tubular extension defined on a wall of the at least one airbag chamber that provides an outflow opening of the at least one airbag chamber. The airbag comprises at least a first airbag chamber and a second airbag chamber. The tubular extension is defined on the first airbag chamber and extending into the second airbag chamber. When the airbag is triggered, the second airbag chamber is filled with gas from the first airbag chamber solely by the tubular extension projecting into the second airbag chamber. The tubular extension bends over in the second airbag chamber when no gas is flowing through the tubular extension to constitute a valve and allow gas to flow through the tubular extension only in the direction of the second airbag chamber.
The invention will be explained in more detail below on the basis of several exemplary embodiments and with reference to the drawings, in which:
According to one exemplary embodiment, the restraint system may include an airbag as disclosed in U.S. Pat. No. 5,603,526, which is herein incorporated by reference in its entirety. The airbag may include a main fabric layer with an outflow opening covered by an additional fabric layer stitched to the main fabric layer. At a predetermined pressure, the additional fabric layer may tear open along a tear seam so that gas can escape from the interior of the airbag.
According to another exemplary embodiment, the restraint system may include the airbag system disclosed in US 2003/0209895, which is herein incorporated by reference in its entirety. The airbag system includes an airbag with an outflow opening defined by a cylindrical fabric connection that deploys outwards when a predetermined internal pressure in the airbag is reached.
According to another exemplary embodiment, the restraint system may include the airbag disclosed in US 2004/0130135, which is herein incorporated by reference in its entirety. The airbag include a cylindrical fabric connection that is turned outside when a specific internal pressure is reached and provides an outflow opening for the airbag.
According to another exemplary embodiment, the restraint system may include the vehicle passenger safety system disclosed in U.S. Pat. No. 6,832,778, which is herein incorporated by reference in its entirety. The vehicle passenger safety system includes outflow openings to the surroundings that are covered or exposed as a function of the state of deployment of an airbag.
The present invention may allow gas to flow out from an airbag into the open air or from a first airbag chamber into a second airbag chamber and/or may allow an airbag to be capable of controlling the direction of flow of the gas.
According to one exemplary embodiment, an outflow device of an airbag chamber is defined by an outflow opening in a main layer of the wall of the airbag chamber. A substantially tear-proof additional layer covers the outflow opening on the outside of the main layer. An intermediate layer at least partially joins the additional layer at its periphery to the main layer. The intermediate layer may be composed of silicone or any other material that may facilitate the joining of the addition layer and main layer. The additional layer forms a membrane that covers the outflow opening of the main layer and with the outflow opening forms a valve.
The outflow opening may allow a pressure-controlled escape of gas from the airbag chamber. When a predetermined pressure is reached in the airbag chamber, the additional layer may detach itself from the main layer due either to the additional layer detaching itself at least partially from the intermediate layer and/or the intermediate layer detaching itself at least partially from the main layer. In both cases gas can escape from the airbag chamber.
The additional layer may be fully joined along its periphery to the main layer via the intermediate layer prior to filling of the airbag with gas. The additional layer may be blown off by the main layer when a specific pressure is reached and may detach itself completely from the main layer. The additional layer may not tear, however, as it may be substantially tear-proof.
Alternatively, the additional layer may be fully joined along its periphery to the main layer via the intermediate layer prior to filling of the airbag with gas so that the additional layer only partially detaches itself from the main layer when a predetermined pressure is reached. A pressure-dependent overflow may occur in the event of a partial detachment of the additional layer. In a reversal of the direction of flow, the additional layer may act as a non-return valve and prevent flow of the gas into the airbag chamber. The additional layer may be a cover that lifts when an internal pressure is reached in the airbag chamber and subsides under a counter-pressure closing the outflow opening.
The intermediate layer preferably includes at least one opening area in which the additional layer detaches itself from the main layer when a predetermined pressure is reached and at least one holding area in which the additional layer is firmly joined to the main layer on and after the predetermined pressure is reached. The at least one holding area may include an additional seam to join the additional layer, the intermediate layer, and the main layer together in the corresponding area of the intermediate layer.
The additional layer may be only partially joined at its periphery to the main layer so that an outflow of gas is possible in any state of deployment of the airbag. An overflow of gas can occur without blowing off the additional layer. In a reversal of the direction of flow, the additional layer may act as a non-return valve and reduce or prevent flow of the gas into the airbag chamber. The additional layer may be a cover that lifts when an internal pressure is reached in the airbag chamber and subsides under a counter-pressure to close the outflow opening. This exemplary embodiment may allow further airbag chambers to be filled from the airbag chamber in question without any gas return flow occurring.
To partially connect the additional layer to the main layer, the intermediate layer may form multiple joining areas in which the additional layer is joined to the main layer and leave vacant areas between the joining areas in which the additional layer is not joined to the main layer so that gas can flow through the vacant areas.
According to another exemplary embodiment, the outflow device of the airbag chamber comprises an elongated tubular extension defined in the wall of the airbag chamber and that provides an outflow opening of the airbag chamber. The tubular extension—hereinafter also referred to as a snorkel—may be dimensionally unstable, for example when no gas is flowing through the snorkel may bend over and collapse. The airbag preferably has a first airbag chamber and a second airbag chamber with the tubular extension being formed on the first airbag chamber and extending into the second airbag chamber. The first airbag chamber and the second airbag chamber may be arranged one on top of the other with the tubular extension extending vertically upwards into the second airbag chamber when gas flows through the extension and collapsing due to gravity in the absence of a gas through-flow.
Thus the snorkel may be a snorkel valve; the snorkel bends over and is closed on cessation of the gas overflow (e.g., after an equalization of pressure in the two airbag chambers). Similarly the snorkel is closed when an excess pressure is reached in the second airbag chamber, for example because a vehicle occupant has come into contact with the second airbag chamber. Therefore, the gas cannot flow into the first airbag chamber. The snorkel is preferably formed from the same or a similar material as the airbag.
According to another exemplary embodiment, the outflow device of the airbag chamber comprises an elongated tubular extension that is formed in the wall of the airbag chamber and provides an outflow opening of the airbag chamber. The tubular extension—hereinafter also referred to as a shrink hose—is composed of a material that may undergo a shrinking process when heated. Heating occurs as gas flows through the shrink house, for example in the event of the airbag being triggered. The shrink hose may include a shrink hose valve, the cross section of which diminishes under increased heating, so that with increased heating the quantity of gas flowing out of the airbag also diminishes. Therefore, the gas venting is temperature-dependent as the cross section of the outflow opening is adjusted based on the temperature of the gas and/or shrink hose.
The shrink hose may be composed of a different material from the airbag and is preferably more dimensionally stable than the snorkel.
Preferably, a sealing sleeve is arranged in the tubular extension and includes gaps along its longitudinal wall through which gas can pass. The tubular extension may conform to the sleeve as the shrinking process progresses and close the gaps.
According to another exemplary embodiment, the outflow device of the airbag chamber comprises an outflow opening that is formed in a main layer of the wall of the airbag chamber and a flat catch strap that is fixed inside the airbag chamber and has at least one local gap. The local gap in the catch strap is arranged in the catch strap and the catch strap is arranged in the airbag chamber so that the local gap is in front of the outflow opening in at least one folding state of the airbag chamber. An outflow of gas from an airbag or, preferably, a filling of another airbag chamber as a function of the state of deployment of the airbag chamber. The catch strap may open or close the outflow opening in a specific deployment position.
Preferably, the catch strap is fed through at least one loop, which is defined on the inside of the airbag chamber wall adjacent to the outflow opening. Feeding the catch strap through the at least one loop may allow the catch strap to be positioned with its local opening over the outflow opening according to the state of deployment. The catch strap can be displaced in the airbag chamber relative to the outflow opening.
The Figures each show an airbag for a vehicle passenger restraint system that includes an outflow device. The outflow device is shown according to various exemplary embodiments in the individual Figures and allows gas to escape from an airbag chamber either into the open surroundings or into another airbag chamber of the airbag. The vehicle passenger restraint system includes other typical elements of a vehicle passenger restraint system such as a gas generator, airbag sensors, and a control device. In addition, according to some exemplary embodiments, the restraint system may include elements not shown in the Figures such as a diffuser, a gas lance, and/or a housing.
The airbags described can be configured in any way, for example as a front airbag for a driver, as a front airbag for a front seat passenger, as a side airbag, as a knee airbag, as a head airbag, etc. The outflow devices may be used in any airbag system of a motor vehicle.
Unless directly stated, the following description of the drawings does not distinguish between situations in which the gas flows into the open (e.g., the outdoor surroundings) via the outflow device and situations in which the gas flows from a first airbag chamber into one or more other airbag chambers via the outflow device. The airbags and outflow devices can be used according to any exemplary embodiment. Reference is made to an airbag chamber and where the airbag comprises only one chamber, the airbag chamber is synonymous with the airbag.
In the area of the opening 11 is an additional layer 30—hereinafter also referred to as a membrane—over the main layer 10. The additional layer 30 is preferably a fabric layer, however, any other laminar material, for example a plastic film or a metal foil, may be a material for the additional layer.
The membrane 30 is not joined to the main layer 10 by stitching but via an intermediate layer 20. The intermediate layer 20 joins the main layer 10 and the membrane 30. The intermediate layer 20 may be formed, for example, from silicone or a layer of adhesive.
According to
Along its periphery, the membrane 30 is joined to the main layer 10 via the intermediate layer 20 and closes the outflow opening 11. When a minimum pressure is reached in the airbag chamber 1, the membrane 30 is blown off. The membrane 30 may be tear-proof so that when the minimum pressure is reached the membrane 30 is detached as a whole from the main layer 10 without tearing.
According to various exemplary embodiments, the minimum pressure needed to blow the membrane 30 off varies, in particular, as a function of the thickness and width of the intermediate layer 20 and the relevant bonding or joining areas of the membrane 30 and the main layer 10 as well as the strength of the connection or adhesive bond.
The arrangement of
The partial peripheral joining of the membrane 30 to the main layer 10 allows air from the outflow opening 11 to flow through the outflow opening 11 and the vacant areas 22 in any state of deployment of the airbag chamber 1, for example into the surroundings or into a further airbag chamber. The membrane 30 laterally overlaps the outflow opening 11 and in the event of a reversal of the direction of flow the membrane may be a sealing element. A non-return valve may allow the flowing gas to pass through the outflow device or the valve formed thereby in one direction of flow. Gas flowing in the other direction of flow leads to closing of the valve. One or more other airbag chambers may be filled from a first airbag chamber with gas being unable to flow back into the first chamber from the other chambers.
When a minimum pressure is reached in the airbag chamber 1, the opening areas 25 open while the membrane 30 along the holding areas 23 continues to be joined to the main layer 10. Therefore, an overflow of gas occurs into the surroundings or into another airbag chamber. A non-return valve closes the outflow opening 11 by the membrane 30 in the event of a reversal of the direction of gas flow. The non-return valve may only open in excess of a predetermined pressure.
The second chamber 120 is filled with gas by the first chamber 110. The airbag wall 111 of the first chamber 110 forms a cylindrical or tubular extension 112, hereinafter also referred to as a snorkel, which protrudes into a corresponding opening 122 in the wall 121 of the second airbag chamber 120. The snorkel 112 is composed of a generally dimensionally unstable material that collapses in the absence of an internal pressure. The snorkel 112 is preferably composed of the same material as the airbag wall 111.
The snorkel 112 likewise bends over if the pressure P2 in the second airbag chamber 120 is greater than the pressure P1 in the first airbag chamber 110, for example due to an impact by the occupant.
One exemplary embodiment of using the shrink hose 211 for controlling the flow of a quantity of gas is shown in
In the non-deployed state in the illustrated embodiment, the opening 321 in the catch strap 320 is arranged over the outflow opening 311 in the airbag wall 310 so that when the airbag is deployed gas can flow out of the airbag chamber 300 through the openings 321, 311. During airbag deployment the catch strap 320 is tightened and the opening 321 in the catch strap 320 is displaced relative to the outflow opening 311 in the airbag wall 310 so that the openings no longer coincide. Once the opening 321 in the catch strap 320 no longer lies over the outflow opening 311, the catch strap 320 covers the outflow opening 311 and prevents any further outflow of gas.
The restraint system described in
The developments described of an airbag for a vehicle passenger restraint system permit a reduction in the stresses acting on passengers in the case of release through outflow devices and allow for control of the quantity of gas escaping.
Germany Priority Application 10 2005 034 250.7, filed Jul. 18, 2005 including the specification, drawings, claims and abstract, is incorporated herein by reference in its entirety.
Given the disclosure of the invention, one versed in the art would appreciate that there may be other embodiments and modifications within the scope and spirit of the invention. Accordingly, all modifications attainable by one versed in the art from the present disclosure within the scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is to be defined as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 034 250.7 | Jul 2005 | DE | national |
This application is a Continuation of US Application PCT/DE2006/001182, filed Jul. 4, 2006, which is incorporated herein by reference in its entirety. This International Application was not published in English but was published in German as WO 2007/009427.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE2006/001182 | Jul 2006 | US |
Child | 12007988 | US |