The present disclosure relates generally to the field of automotive protective systems. More specifically, the present disclosure relates to airbag deployment systems for preventing damage to the airbag cushion and positioning the airbag cushion during deployment.
The present embodiments will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments, and are, therefore, not to be considered to be limiting of the scope of the present disclosure, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings as provided below.
It will be readily understood that the components of the embodiments as generally described and illustrated in the Figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the Figures, is not intended to limit the scope of the present disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
The phrases “connected to,” “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to each other even though they are not in direct contact with each other. The phrases “attached to” or “attached directly to” refer to interaction between two or more entities which are in direct contact with each other or are separated by a fastener.
Inflatable airbag systems are widely used to minimize occupant injury in a collision scenario. Airbag modules have been installed at various locations within a vehicle, including, but not limited to, the steering wheel, the instrument panel, within the side doors or side of seats, adjacent the roof rail of the vehicle, in an overhead position, or at the knee or leg position.
Airbag cushions that are located in an instrument panel or steering wheel typically deploy directly in front of an occupant. These are commonly referred to as frontal airbag systems. During a collision, the airbag cushion inflates and deploys through a cosmetic cover. The airbag cushion deploys towards the occupant and provides restraint. Conventionally, airbag deployment may be problematic when an occupant is out of position, such as being positioned to closely to the airbag or when an object is considered out of position, such as a rear-facing infant car seat in the passenger seat of a vehicle.
Additionally, as a frontal airbag deploys out of its module housing within the instrument panel, the edges of the cover may be rough. Rough edges in the cover may rub against the airbag cushion as it deploys, possibly causing tearing, holes or snags in the airbag cushion.
Accordingly, airbag assemblies of the present disclosure are provided to protect an airbag cushion from ripping, tearing, or snagging during deployment. Airbag assemblies of the present disclosure also are provided to position the airbag around potential out of position objects such as an infant car seat or out of position occupants so that the airbag cushion does not deploy in an anomalous condition.
Airbag assembly 100 also includes a deployment flap 108 having a first end 109 which is coupled adjacent the airbag cushion 102. In the embodiment depicted in
An extension flap 110 is also attached to deployment flap 108 through stitching 112 at a free second end 114 of deployment flap 108. Extension flap 110 may be constructed of fabric or similar material and may alternatively be coupled to deployment flap 108 through adhesives, RF welding and the like. The additional extension flap 110 may increase the likelihood of protecting airbag cushion 102 and help position airbag cushion 102 during deployment due to the location of extension flap 110 relative to airbag cushion 102.
Housing 220 is typically a rigid member that provides a support and mounting structure for airbag module 200 components. Housing 220 may enclose airbag cushion 202, or alternatively may be a mounting plate without side walls. Airbag cover 222 is generally formed from a weaker material than housing 220. Airbag cover 222 provides a surface that is exposed to the inside of the passenger compartment of a vehicle and also a surface that may open to release airbag cushion 202 upon deployment. Housing 220 and cover 222 form an internal volume, such that airbag module 200 may be situated in several locations within a vehicle, including the steering wheel, the passenger side dash and side doors.
Deployment flap 208 and extension flap 210 are folded over airbag cushion 202 in an accordion-like fashion in an undeployed state. Deployment flap 208 and extension flap 210 protect airbag cushion 202 from directly impacting airbag cover 222 during deployment and further reinforce airbag cushion 202 as the initial inflating sections of airbag cushion 202 force out airbag cover 222 through one or more tear seams 224. Tear seams 224 are generally sections of airbag cover 222 that have a reduced thickness compared to other portions of airbag cover 222. Tear seams 224 provide controlled failure locations in airbag cover 222 through which a deploying airbag may pass through.
Deployment of airbag cushion 202 occurs as an inflator 226 generates inflation gas, which is directed into airbag cushion 202. As airbag cushion 202 inflates, it applies a force on both airbag cover 222 and housing 220. Because the relative strength of airbag cover 222 is less than the relative strength of housing 220, the expanding airbag cushion 202 forces through airbag cover 222 into the passenger compartment.
If edges of tear seams 224 are not completely smooth when torn open, the edges may cause tears or rips on the fabric of conventional airbag systems. However, according to the embodiment of
Deployment flap 308 and extension flap 310 protect and help position airbag cushion 302 during deployment and further reinforce airbag cushion 302 as the initial inflating sections of airbag cushion 302 force out airbag cover 322 through one or more tear seams 324. Airbag module 300 may be situated in several locations within a vehicle, including the steering wheel, the passenger side dash and side doors.
A deployment flap 408 similar to those described herein extends from module housing 420. A first end (not shown) of deployment flap 408 is coupled to or adjacent to the airbag within module housing 420. A second end 414 of deployment flap 408 is attached to a first end 430 of an extension flap 410, through stitching or similar fastening methods. A second or free end 432 of extension flap 410 extends into the passenger compartment 14 and around an out of position object, such as an infant car seat 16 located in the passenger seat 18. In the embodiment shown, second end 432 of extension flap 410 extends beyond a distal end 434 of inflatable airbag cushion 402 when inflated.
In addition to providing protection to airbag cushion 402 as it deploys out of module housing 420, extension flap 410 also functions to position the airbag around out of position objects such as the car seat 16 or an out of position occupant. By guiding the deployment of airbag cushion 402 around problematic objects, extension flap 410 helps airbag cushion 402 to not deploy in an anomalous condition. Airbag cushion 402 is thereby allowed to deploy in a normal state and reduce the potential of injury to occupants by anomalous deployment.
Closeable vent 540 may comprise a cinch tube constructed of a nylon woven fabric-type or suitable material known in the art. The closeable vent 540 may be embodied with a generally cylindrical shape and having open ends to enable gas venting. Closeable vent 540 may alternatively be of any suitable shape such as a polygonal shape. Closeable vent 540 may also be embodied with a height that is sufficient to achieve desired closure.
Closeable vent 540 is coupled to the surface of airbag cushion 502 and circumvents a vent hole 506. In one embodiment, closeable vent 540 may extend into the airbag cushion interior, or in other embodiments, closeable vent 540 may extend outside airbag cushion 502. In one embodiment, a single closeable vent 540 may be used, but airbag cushion 502 may include multiple closeable vents, which may optionally be symmetrically disposed in airbag cushion 502 as shown in
Airbag assembly 500 includes a tether 542 that couples or engages closeable vent 540 and couples to a surface of airbag cushion 502. Tether 542 may be constructed of a nylon material or other suitable material known in the art. The surface to which tether 542 is connected may be the surface opposing the outer surface that is configured to contact the occupant. The location of where tether 542 is coupled to may depend on module deployment angle, vehicle interior geometry and cushion fold type.
In
If an occupant or another object is in close proximity to deploying airbag 502 and restricts normal inflation, closeable vent 540 remains open and allows gas to rapidly escape from vent hole 506 because tether 542 is slack. However, if the occupant is in a normal position and inflation is unrestricted, the tension of tether 542 pulls on closeable vent 540 to close closeable vent 540. Closure retains inflation gas for normal occupant restraint. Thus, closeable vent 540 and extension flap 510 may be used as a variable feature in out-of-position conditions and in normal restraint conditions. In this manner, airbag cushion 502 is sensitive to obstructive expansion of cushion 502.
Deployment flaps 108, 208, 308, 408 disclosed herein are examples of means for protecting the airbag cushion during deployment from an airbag module housing. Moreover, extension flaps 110, 210, 310, 410, 510 disclosed herein are examples of means for positioning the airbag cushion during deployment. Additionally, closeable vents 540 disclosed herein are examples of means for restricting gas venting.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the present disclosure to its fullest extent. The examples and embodiments disclosed herein are to be construed as merely illustrative and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure described herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Note that elements recited in means-plus-function format are intended to be construed in accordance with 35 U.S.C. §112 ¶6. The scope of the invention is therefore defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4842300 | Ziomek et al. | Jun 1989 | A |
5346248 | Rhein et al. | Sep 1994 | A |
5407227 | Lauritzen et al. | Apr 1995 | A |
5447329 | Hamada | Sep 1995 | A |
5452913 | Hansen et al. | Sep 1995 | A |
5492363 | Hartmeyer et al. | Feb 1996 | A |
5588674 | Yoshimura et al. | Dec 1996 | A |
5613698 | Patercsak et al. | Mar 1997 | A |
5630614 | Conlee et al. | May 1997 | A |
5755459 | LaLonde | May 1998 | A |
5765867 | French | Jun 1998 | A |
5772239 | Seymour | Jun 1998 | A |
5823566 | Manire | Oct 1998 | A |
6056318 | Braunschadel | May 2000 | A |
6131944 | Henkel et al. | Oct 2000 | A |
6371510 | Marriott et al. | Apr 2002 | B1 |
6474686 | Higuchi et al. | Nov 2002 | B1 |
6669229 | Thomas | Dec 2003 | B2 |
6682093 | Tajima et al. | Jan 2004 | B2 |
6874810 | Soderquist | Apr 2005 | B2 |
6877772 | Fischer et al. | Apr 2005 | B2 |
6883831 | Hawthorn et al. | Apr 2005 | B2 |
6942242 | Hawthorn et al. | Sep 2005 | B2 |
6955377 | Cooper et al. | Oct 2005 | B2 |
6971671 | Schneider et al. | Dec 2005 | B2 |
7083191 | Fischer | Aug 2006 | B2 |
20020020990 | Sinnhuber et al. | Feb 2002 | A1 |
20030189319 | Soderquist | Oct 2003 | A1 |
20030234520 | Hawthorn et al. | Dec 2003 | A1 |
20070057487 | Kim | Mar 2007 | A1 |
20070120346 | Kwon | May 2007 | A1 |
20070126219 | Williams | Jun 2007 | A1 |
20070138779 | Kwon | Jun 2007 | A1 |
20070170710 | Bouquier | Jul 2007 | A1 |
20070278772 | Burghardt et al. | Dec 2007 | A1 |
20080023950 | Kalczynski et al. | Jan 2008 | A1 |
20080217892 | Maripudi | Sep 2008 | A1 |
20090039630 | Schneider et al. | Feb 2009 | A1 |
20090152842 | Benny et al. | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
2005343267 | Dec 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20080217887 A1 | Sep 2008 | US |