A gas turbine engine typically includes one or more fuel injectors. A fuel injector can comprise an airblast fuel nozzle assembly adapted to suitably mix fuel and air, and positioned to direct this air-fuel mixture into the engine's combustion chamber. Such a nozzle assembly is typically assumed to provide low-emission fuel injection, as inner and outer air circuits are used to atomize the fuel to facilitate consistent and uniform mixing.
A fuel airblast nozzle assembly is provided that can function, for example, as a fuel injector in a gas turbine engine. The nozzle assembly can comprise both a main-fuel-feed circuit and a pilot-fuel-feed circuit, with the pilot-fuel-feed circuit providing a relatively large pressure drop across a channel discharge region. With such a circuit construction, a significant drop in air pressure (across the nozzle) is not necessary during ignition stages of engine operation, because the pilot-fuel pressure drop itself can adequately assist in atomization. And during post-ignition engine operation (when large drops in air pressure will exist), the main-fuel-feed circuit can be additionally or alternatively activated to take advantage of the low-emission mixing characteristics common in airblast-nozzle designs.
An airblast fuel nozzle assembly 10 is shown installed in a gas turbine engine 11 in
The airblast fuel nozzle assembly 10, shown in
The innermost sleeve 30 has an inlet 34 opening into a central passageway 35 that extends therethrough. In the illustrated embodiment, a vaned swirler 36 is situated within the central passageway 35, upstream of the necked portion 33. The swirler 36 shown has a plurality of angled vanes and is fixedly mounted (i.e., it does rotate relative to the sleeve 30) within the passageway 35. Other swirler constructions, vane designs, and/or a sleeve 30 without a swirler 36 are possible and contemplated.
A fuel-feed channel 44 is situated between the sleeve 40 and the sleeve 50, and another fuel-feed channel 54 is situated between the sleeve 50 and the sleeve 60. The channel 44 travels along the axial length of the sleeves 40/50 until it reaches a discharge region 45 including channel exits 46. The channel 54 travels along the axial length of the sleeves 50/60 until it reaches a discharge region 55 including channel exits 56. A prefilming surface 67 is located downstream of the channel exits 46 and the channel exits 56.
The fuel-feed channel 44 can be continuous (e.g., cylindrical) or separated into distinct streams via webs, slots, or other features in the sleeves between which it is situated. The discharge region 45 is formed by a portion of the sleeve 50 and the exits 46 are the open downstream ends of passages 48 (e.g., slots, holes, apertures, etc.) that extend through this region. The passages 48 extend radially outward to thereby convey the pilot fuel directly against the prefilming surface 67 (which is a cylindrical surface formed by the inner surface of the sleeve 60). This radially-outward geometry of the exit(s) may be advantageous in nozzle designs that incorporate only one fuel-feed circuit.
The fuel-feed channel 54, like the fuel-feed channel 44, can be continuous (or not). The discharge region 54 can occupy a radial flange around the sleeve 50 and the exits 56 (e.g., slots, holes, apertures, etc.) can be open downstream ends of passages 58 that extend through this radial flange 55. These passages 58 can be angled (or not) relative to the sleeve's axial direction to provide (or not provide) a swirled exit path.
The discharge region 45 and the discharge region 55 will usually be located downstream of the necked portions 43/53 of the sleeves 40/50. In the embodiment shown in
The sleeve 70 can comprise an upstream section 71 and a downstream section 72, with the latter section 72 including the necked portion 73. The upstream end of the sleeve 80 forms an annular inlet 81 around the sleeve 70 and its downstream end forms a nozzle outlet 82. The sleeve 70 and the sleeve 80 define an annular passageway 83 therebetween. Swirling vanes 74, situated within the passageway 83, can extend radially outward from sleeve 70 and/or radially inward from the sleeve 80.
The sleeve structure 20 forms an inner-air circuit, an outer-air circuit, a pilot-fuel-feed circuit, and a main-fuel-feed circuit. The inner-air circuit comprises the central passageway 35 and extends from the inlet 34 to the nozzle outlet 82. The outer-air circuit comprises the annular passageway 83 and extends from the inlet 81 to the nozzle outlet 82. As shown in dashed lines in
The pilot-fuel-feed circuit comprises the channel 44, the exits 46, and the prefilming surface 67. The pilot-fuel-feed-circuit exits 46 have a combined cross-sectional area that is substantially less than that of the channel 44 upstream of the discharge region 45. This exit geometry causes the pilot fuel to experience a pressure drop (e.g., at least 3 psi, at least 5 psi, and/or at least 10 psi) across the discharge region 45 that is sufficient for self atomization. For example, the cross-sectional area of the channel 44 can be at least twice as great, at least three times as great, and/or at least four times as great as the combined cross-sectional area of the exits 46.
The main-fuel-feed circuit comprises the channel 54, the exits 56, and the prefilming surface 67. The main-fuel-feed-circuit exits 56 can have a combined cross-sectional area that is less than that of the channel 54 upstream of the discharge region 55. The combined cross-sectional area of the exits 56 can be greater (e.g., 20% greater, 30% greater, 40% greater) than that of the pilot-fuel-feed-circuit exits 46. That being said, exits 56 of the same or smaller size than the exits 46 (either individually or collectively) is possible and contemplated.
The feed circuits can instead be reversed, with the radially outer channel 44 being part of the main-fuel-feed circuit and the radially inner channel 54 being part of the pilot-fuel-feed circuit.
The airblast fuel nozzle assembly 10 can further comprise a radial sleeve structure 90 with an outer sleeve 91 and an inner sleeve 92. In the illustrated embodiment, the outer sleeve 91 is formed in one piece with the upstream section 71 of the sleeve 70. The outer sleeve 92 includes an opening 93 therethrough and the inner sleeve 92 is positioned within this opening 93. A channel 94 is formed within the inner sleeve 92 and another channel 95 is formed therearound. The channel 94 is in fluid communication with the channels 44 in the sleeve structure 20 and thus serves as an introduction channel to the pilot-fuel-feed circuit. The channel 95 is in fluid communication with the channel 54 in the sleeve structure 20, and thus serves as an introduction channel to the main-fuel-feed circuit.
In the engine 11, air is drawn through the inner-air circuit and the outer-air circuit from the engine's compressor section 12. The introduction channels 94 and 95 can each be connected to a fuel tank (not shown) to thereby supply fuel to the pilot-fuel-feed-circuit channels 44 and 54, respectively. Controls (e.g., valves, switches, etc.) can be appropriately provided so as to allow pilot fuel and main fuel to be selectively introduced to their respective circuits.
During the ignition stage of engine operation, fuel can be supplied (e.g., through the introduction channel 94) substantially only to the pilot-fuel-feed circuit. (There may sometimes be a slight drip or drool through the main-fuel-feed-circuit.) The supplied fuel will flow through the channel 44, discharge through exits 46, and impinge against the prefilming surface 47. The pilot fuel will then join the inner-air circuit, later merge with the outer-air circuit, and leave the nozzle assembly 10 in a fuel-air mixture through outlet 82. Because the pressure drop across the discharge region 45 is sufficient to facilitate atomization, a large drop in air pressure is not necessary during ignition stages of engine operation.
During post-ignition engine operation (when large drops in air pressure are present), fuel can also be supplied to both fuel-feed circuits (e.g., through both introduction channels 94-95) or fuel can be supplied to only the main-fuel-feed circuit (e.g., through only the introduction channel 95). In either or any event, the main fuel will flow downstream through channels 54, discharge through exits 56, and impinge against the prefilming surface 67. The main-fuel-feed circuit can be designed to provide optimum fuel-air mixing (and thus low emissions) without having to compromise for ignition conditions. And aside from ignition issues, the fuel-feed circuits can be staged to optimize combustion characteristics.
In the airblast fuel nozzle assembly 10′ shown in
In the airblast fuel nozzle assembly 10″ shown in
In the airblast fuel nozzle assembly 10′″ shown in
Although the airblast fuel nozzle assembly 10/10′/10″/10′″, the engine 11, and/or the sleeve structure 20 has been shown and described with respect to a certain embodiments, equivalent alterations and modifications should occur to others skilled in the art upon review of this specification and drawings. If an element (e.g., component, assembly, system, device, composition, method, process, step, means, etc.), has been described as performing a particular function or functions, this element corresponds to any functional equivalent (i.e., any element performing the same or equivalent function) thereof, regardless of whether it is structurally equivalent thereto. And while a particular feature may have been described with respect to less than all of embodiments, such feature can be combined with one or more other features of the other embodiments.
This application claims priority of U.S. Provisional Application No. 61/180,974 filed on May 26, 2009. The entire disclosure of this provisional application is hereby incorporated by reference. If incorporated-by-reference subject matter is inconsistent with subject matter expressly set forth in the written specification (and/or drawings) of the present application, the latter governs to the extent necessary to eliminate indefiniteness and/or clarity-lacking issues.
Number | Name | Date | Kind |
---|---|---|---|
5277023 | Bradley et al. | Jan 1994 | A |
5505045 | Lee et al. | Apr 1996 | A |
6345505 | Green | Feb 2002 | B1 |
6363726 | Durbin et al. | Apr 2002 | B1 |
20020134084 | Mansour et al. | Sep 2002 | A1 |
20060248898 | Buelow et al. | Nov 2006 | A1 |
20090277176 | Caples | Nov 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100300105 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
61180974 | May 2009 | US |