The invention is now described in more detail with reference to the accompanying diagrammatic drawings, in which:
The aircraft seat 2 includes a seat feed line 8, which branches off air from an air supply line 4. The air supply line 4 can be connected to a central air-conditioning system of the aircraft, which provides fresh air and/or a mixture of fresh air and recirculated air. A heating device 22, for example an electrical heating device, is arranged in the seat feed line 8 in order to heat the air in the seat feed line 8 according to the wishes of a passenger. In addition a heat exchanger 14 is located in the seat feed line 8, by means of which the air in the seat feed line 8 can be cooled. An air feed valve 10 arranged in the seat feed line 8 can control the amount of air discharged through a nozzle 12.
The heat exchanger 14 is connected to a so-called low temperature bus. The low temperature bus is a bus-type cooling system which feeds liquid coolant via a feed line 18 and a valve 16 to the heat exchanger 14. The low temperature bus supplies a plurality of heat exchangers with liquid coolant, in which connection the plurality of heat exchangers can be arranged in parallel and/or in series in the low temperature bus. The heat exchanger 14 can discharge the coolant in the gaseous or liquid state into a return line 20. Since a liquid coolant can dissipate relatively large amounts of heat, the feed line 18 for liquid coolant can be designed having a relatively small cross-section, whereby it can be placed in a relatively flexible manner underneath the floor 6 of a cabin of an aircraft.
Means (not shown) for adjusting the set temperature of the air leaving the nozzle 12 as well as for adjusting the amount of air leaving the nozzle 12 can be provided at the aircraft seat 2. A control device (not shown) controls the heating device 22, the valve 16 and the air feed valve 10 in such a way that air at the desired temperature as well as in the desired amount exits from the nozzle 12. Instead of the control device, a regulating device (not shown) and sensors (not shown) for determining the temperature and the amount of air leaving the nozzle 12 can also be provided. In this case the passenger in the aircraft seat 2 is provided with a particularly high degree of thermal comfort. The heating device 22, the heat exchanger 14, the valve 16 and the air feed valve 10 can be arranged in the region, for example in the aircraft seat, to be individually air conditioned.
Since the second embodiment in contrast to the first embodiment does not include an air supply line 4, the second embodiment can be used in a particularly flexible manner for the air conditioning of an aircraft cabin and/or a region thereof. At least one feed line 18 and a return line 20 of a low temperature bus simply have to be placed underneath the floor 6 of a cabin of the aircraft.
Reference is now made again to
The first embodiment and the second embodiment have been discussed on the basis of an aircraft seat 2, in which connection the aircraft seat 2 and/or its surroundings constitute a region of an aircraft cabin to be individually air conditioned with which a passenger is associated. It is to be understood that the features of the invention illustrated for the aircraft seat 2 can also be applied to other regions to be individually air conditioned. Such a region to be individually air conditioned includes for example a first-class compartment, a sleeping section, an area for the crew and the like. It is to be understood that these regions can also each be associated at least one person. The liquid coolant of the low temperature bus can also be used to cool a refrigerator or water cooler associated with the region of the aircraft cabin to be individually air conditioned.
Each region to be individually air conditioned can accommodate at least one passenger. The passenger or passengers in the region to be individually air conditioned can adjust the temperature in the corresponding region independently of the temperature of other regions of the aircraft cabin. A central air-conditioning system can be provided for replacing the air in the region to be individually air conditioned.
Further, in the third embodiment the coolant/air heat exchanger 14 is not necessary. Hose lines (not shown) can be arranged in the aircraft seat 2, in which lines circulates the liquid coolant of the low temperature bus. The hose lines form a heat transfer device. The heat transfer device is thermally coupled to a sitting area or reclining area of the aircraft seat.
The invention has been explained in such a way that air is cooled by means of a liquid coolant in a heat exchanger 14. It is however also conceivable that a refrigerating machine (chiller) is associated with the region of an aircraft cabin to be air conditioned, the machine releasing its waste heat, produced for example by condensation, to the liquid coolant. In this way temperatures can be reached in the region to be air conditioned that are lower than the temperature of the liquid coolant.
The invention has the advantage that the feed line 18 for liquid coolant and the return line 20 of the low temperature bus require less space than an air supply line 104 of an aircraft air-conditioning system of the prior art. The aircraft air-conditioning system according to the invention can therefore be installed relatively easily in an aircraft. Due to the relatively small cross-section of the feed line 18 for liquid coolant and the return line 20 of the cold bus, the cabin can be reconfigured relatively easily, since fewer spatial limitations have to be taken into account compared with an aircraft air-conditioning system of the prior art.
The region to be individually air conditioned can accommodate an arbitrary number of persons, for example passengers and/or crew members.
The aircraft air-conditioning system according to the invention can be configured so that the coolant in the feed line 18 and in the return line 20 is in the liquid state. It is however also conceivable for the coolant in the return line 20 to be in the gaseous state.
If the coolant in the cooling circuit is always in the liquid state, then the aircraft air-conditioning system can be configured particularly easily, since no thermodynamic constraints have to be taken into account. In this case it simply has to be ensured that the temperature of the liquid coolant flowing into the heat exchanger 14 is lower than the lowest set temperature of the region of the aircraft cabin to be air conditioned.
A water-propylene glycol mixture or a water-glycol mixture can for example be used as coolant.
Number | Date | Country | Kind |
---|---|---|---|
DE102006041030.0 | Sep 2006 | DE | national |
Number | Date | Country | |
---|---|---|---|
60824296 | Sep 2006 | US |