The present invention relates to an aircraft electrical network, particularly, though not exclusively, to an aircraft electrical network for an aircraft comprising electrically driven propulsors.
In view of increasing energy costs, there is a continuing need to provide aircraft which burn less fuel for a given set of requirements. In co-pending UK patent application GB 1320988.7 (incorporated herein by reference) an aircraft is proposed in which a plurality of electrically driven propulsors is provided. The electrically driven propulsors are provided with electrical power from one or more internal combustion engines in the form of gas turbine engines, which drive AC generators. This arrangement is thought to result in a highly efficient aircraft in view of reduced wing sizing for a given mission, as well as other effects.
However, in order for the aircraft to remain competitive compared to a conventional aircraft, it is necessary for the electrical generators and associated electrical transmission arrangement to be as light as possible, while generating and transmitting electrical power with as few losses as possible.
The present invention describes an aircraft electrical transmission network which seeks to overcome some or all of the above problems.
According to a first aspect of the present invention, there is provided an aircraft comprising an internal combustion engine and a wing comprising a hollow structural member, wherein the aircraft comprises an electrical network comprising:
at least one alternating current electrical generator configured to be driven by the internal combustion engine;
an electrical motor configured to drive an aircraft propulsor;
at least one conductor configured to electrically couple the electrical motor and the electrical generator;
wherein the electrical conductor is formed of the hollow structural member of the aircraft wing.
Accordingly, electrical power can be transmitted by a hollow structural member. In view of the relatively high frequency and high power of the electrical power transmitted between the generator and the electrical motors, it is desirable for the conductor to be hollow, in view of the relatively small skin depth of the current in such circumstances. By using a hollow structural member as the conductor, a low resistance conductor can be provided, without significantly increasing the weight of the aircraft structure, since the conductor provides part of the structural integrity of the aircraft.
The conductor may comprise a conductive coating provided on a surface of the hollow structural member. Alternatively or in addition, the hollow structural member may comprise a conductive material such as aluminium, and may provide a conductive path of the conductor.
The hollow structural member may comprise any of a wing leading edge box, a wing centre box, and a wing trailing edge box. Preferably, the hollow structural member comprises a wing leading edge D-box.
The conductor may comprise at least two conducting elements carrying a separate electrical phase. For example, the conductor may comprise a current carrying element and a current return/ground element. Each current carrying/current return element may be arranged concentrically.
The conductor may comprise one or more insulators configured to insulate the conductor from surrounding structure, and/or insulate the current carrying element from the current return/ground element.
The alternating current electrical generator may be configured to provide electrical current having a frequency between 360 and 2000 Hz.
A wingspan is defined by the distance between wing tips 49. Each wing 44 comprises a leading edge 45 and a trailing edge 47, which together define a chord extending therebetween. The ratio between the wingspan and chord length defines an aspect ratio. As can be seen from
In the example shown in
A plurality of propulsors 46 is provided on each wing 44, which provide thrust to drive the aircraft forward. The plurality of propulsors 46 on each wing together define a centre of thrust 70, i.e. a notional line extending rearwardly from the centre of the airflow provided by the propulsors 46 on that wing 44. In the described embodiment, four propulsors are provided, though more or fewer propulsors may in some cases be provided. The relatively large number of propulsors 46 enables a relatively large propulsor disc area to be employed. Consequently, the propulsors are highly efficient and relatively quiet, without requiring excessive ground clearance, which thereby reduces the length of the undercarriage.
Each propulsor 46 comprises an electric motor 51 housed within a nacelle 48, and a propeller 50 driven by the motor 51, though other forms of propulsors such as electrically driven ducted fans driven by the motors 51 could be employed. Each propeller 50 is located forward of the leading edge 45 of the wing 44, and is mounted to the wing 44 by the nacelle 48. In use, the propellers 50 rotate to provide airflow, and therefore thrust. As the propellers 50 are located forward of the leading edge 45, the airflow travels over the portion of the wing 44 located behind the respective propellers 50, and in particular over the flaps 52. This airflow increases the effective airflow over the wing 44, thereby increasing the coefficient of lift (CL) when the propellers 50 are turning, and particularly where the flaps 52 are extended. The propellers 50 are relatively closely spaced, such that the propellers 50 provide airflow over a large proportion of the wing 44, and particularly, the portion of the wing on which the flaps 52 are located.
In the described embodiment, the maximum coefficient of lift of each wing 44 when the flaps 52 are deployed, and the propulsors 46 are at maximum power (CLmax(power on)) is approximately twice the maximum coefficient of lift of each wing 44 when the propulsors 46 are at minimum power (CLmax(power off)), i.e. when the propulsors 46 are turned off. Consequently, the propulsors 46 substantially increase the amount of lift generated by the wings 44, thereby reducing the wing area required for a given amount of lift, or increasing the amount of lift for a given wing area.
Each wing further 44 comprises a generator arrangement 54, shown in further detail in
In order to generate electricity efficiently from the relatively high speed shafts of the engine, without recourse to relatively heavy and bulky reduction gearboxes, it is necessary to provide an electrical generator 56 which produces electrical power at a relatively high AC frequency, such as 360 to 2000 Hz, which corresponds to the frequency generated by a three-phase generator driven directly by the low pressure shaft of a typical two shaft or three shaft gas turbine engine. In such cases, it can be shown that the skin depth of conductors carrying such high frequency electrical power is relatively small—of the order of a few millimetres, as shown below.
The skin depth δ is related to the angular frequency of the AC current ω (i.e. 2π×the frequency), resistivity of the conductor ρ, relative magnetic permeability of the conductor μr, and the permeability of free space μ0 in accordance with the following equation:
The resistivity of aluminium 2024 alloy typically used in aircraft construction varies between 3 and 4×10−8 Ωm, the relative magnetic permeability is approximately 1, the permeability of free space is 4π×10−7 Hm−1, and the maximum angular frequency of the current in this example is approximately 5000 (800×2π). Consequently, the skin depth in this example would be approximately 3 mm. Consequently, a solid cable carrying this current would either have a relatively high resistance in view of the relatively small effective cross sectional area of the conductor, or a relatively large diameter, and so a relatively high weight, much of which would not carry a significant portion of the current.
Each of the hollow members 74, 76, 78 is hollow, and made from an electrically conductive structural metal alloy such as aluminium. Consequently, one or more of the hollow structural members can be used as a conductor. The members 74, 76, 78 may have any of a tubular, triangular, D-shaped, or box section cross section, or any other cross section as would be appropriate in view of the local shape of the surrounding skin, and structural considerations.
As can be seen in
Consequently, each electrical element 180 may comprise a plurality of sub-elements in the form of filaments 186, 188, 190. One of more of these sub-elements may be electrically connected to another sub-element, or may be electrically independent of one or more other sub-element. For example, each of the filaments 186, 188, 190 may carry the same phase between the generator 56 and motor 51, thereby providing redundancy in the event of failure of one or more of the other filaments 186, 188, 190 within that element 180. Connectors (not shown) to each filament 186, 188, 190 could be provided extending radially from the filaments, or at each end. The connectors may comprise current interruption devices such as circuit breakers, which would interrupt current flow in the event of an electrical malfunction.
Alternatively, each of the filaments 186, 188, 190 could carry a separate electrical phase. In such a case, only a single tubular electrical element might be provided.
The arrangement of the present invention provides a synergy, in that the hollow structural members provide both a load carrying, and an electrical power carrying function. Meanwhile, the hollow structural members provide an efficient means of bearing the bending and compressive loads experienced by the aircraft, and an efficient means of transmitting electrical power (in terms of weight and electrical resistance) in view of their hollow, tubular arrangement. In contrast, solid electrical cables would provide relatively low efficiency electrical power transmission (in view of having a small diameter and therefore high resistance, or a large diameter and therefore high weight), while also being poor load bearing elements for all but tensile loads, whereas aircraft load bearing elements typically require transmission of bending loads.
Furthermore, due to the layered construction of the tubular structural elements from different materials, the structure is essentially of a composite nature. Consequently, the insulating material such as Nomex™ may provide compressive strength, while the layers of conductive metallic material may provide tensile and bending strength. Consequently, the hollow structural members may provide improved structural properties compared to prior structural members.
Where the electrically conducting hollow structural elements are provided adjacent the leading edge of the wing (such as in the D-box), resistive heating caused by the elements may help reduce wing icing at the leading edge. Current may be maintained within these conductors during times of non-operation of the motors by windmilling one or more propulsors, such that the propulsor motors act as generators. Similarly, increased current could be provided for de-icing by short-circuiting one or more electrical conductors.
The electrically conducting hollow structural elements may also be used to transmit control signals and other data, for example using frequency or pulse modulation of the electrical current.
The network could comprise an impedance sensor configured to measure electrical impedance between two or more electrical conductors. Advantageously, physical separation/delamination between layers could be detected by measuring conductor electrical impedance, due to the resulting increase in dielectric constant between phases where the gap between conductors is increased.
While the invention has been described in conjunction with the exemplary embodiments described above, many equivalent modifications and variations will be apparent to those skilled in the art when given this disclosure. Accordingly, the exemplary embodiments of the invention set forth above are considered to be illustrative and not limiting. Various changes to the described embodiments may be made without departing from the spirit and scope of the invention.
Though particular examples of generators and propulsors are provided, it will be understood that these are only examples of a broader class of suitable equipment. For example, other types of electrical generators and motors could be used, such as induction generators and motors. Other forms of propulsors could be used, such as ducted fans.
In addition to motors for powering electrical motors, the electrical conductors could be utilized to power other aircraft equipment, such as actuators, sensors, aircraft environmental control equipment, etc. Similarly, the conductors could carry electrical signals from sensors distributed about the aircraft.
The structural conductor could comprise further conductive layers which are not connected to electrical equipment, in order to provide electrical field shield and/or lightning protection.
In general, it will be appreciated that the invention is applicable to different aircraft configurations. For example, the propulsors could be provided in different locations, such as at the trailing edge of the wing or the aft end of the fuselage. Similarly, the invention is applicable to so-called “blended wing body” aircraft, which do not possess distinct fuselage and wings.
Aspects of any of the embodiments of the invention could be combined with aspects of other embodiments, where appropriate.
Number | Date | Country | Kind |
---|---|---|---|
1607038.5 | Apr 2016 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
4605185 | Reyes | Aug 1986 | A |
5122072 | Arn | Jun 1992 | A |
7207521 | Atkey | Apr 2007 | B2 |
9096312 | Moxon | Aug 2015 | B2 |
9475579 | Fredericks | Oct 2016 | B2 |
9729096 | Edwards | Aug 2017 | B2 |
9950801 | Viala | Apr 2018 | B2 |
10071801 | North | Sep 2018 | B2 |
10131441 | Edwards | Nov 2018 | B2 |
10252797 | Vondrell | Apr 2019 | B2 |
10273019 | Sands | Apr 2019 | B2 |
20030180145 | Goldberg | Sep 2003 | A1 |
20040118969 | MacCready | Jun 2004 | A1 |
20050236175 | Reis | Oct 2005 | A1 |
20060254255 | Okai | Nov 2006 | A1 |
20070139019 | Wiegman | Jun 2007 | A1 |
20080184906 | Kejha | Aug 2008 | A1 |
20080303280 | Xu | Dec 2008 | A1 |
20090127855 | Shander | May 2009 | A1 |
20100193630 | Duces | Aug 2010 | A1 |
20110024567 | Blackwelder | Feb 2011 | A1 |
20110198918 | Langlois | Aug 2011 | A1 |
20130119664 | Pereira | May 2013 | A1 |
20140138479 | Vieillard | May 2014 | A1 |
20140333127 | Edwards | Nov 2014 | A1 |
20150013306 | Shelley | Jan 2015 | A1 |
20150042155 | Vieillard | Feb 2015 | A1 |
20150144742 | Moxon | May 2015 | A1 |
20150244296 | Edwards | Aug 2015 | A1 |
20150344138 | Wen | Dec 2015 | A1 |
20160332741 | Moxon | Nov 2016 | A1 |
20170302145 | Holenstein | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
2 878 538 | Jun 2015 | EP |
2910739 | Aug 2015 | EP |
213065 | Mar 1924 | GB |
Entry |
---|
Aug. 29, 2017 Extended European Search Report issued in European Patent Application No. 17165704. |
October 13, 2016 Search Report issued in British Patent Application No. 1607038.5. |
Number | Date | Country | |
---|---|---|---|
20170305524 A1 | Oct 2017 | US |