The subject of this invention is an aircraft engine comprising an azimuth setting between the diffuser and the combustion chamber.
The diffusers in question are arranged on the gas flow duct, between the compressors and the combustion chamber, and they consist in one or several circles of fixed vanes, which alter the flow of gases exiting from the compressor by opposing it with curved and concave intrados surfaces, before allowing them to arrive in the combustion chamber. Combustion chambers are described in documents FR-2 881 813-A and FR-2 905 166-A. There are diffusers devoid of the marked property of altering the flow, of which the vanes are axial and straight (FR-2 616 890-A and GB-700 688-A).
The interest here is to prevent accidental extinctions of the combustion chamber, subsequent to the ingestion of water in the engine. This ingestion of water at any phase in aircraft engines can come from various causes, including flight in inclement weather (rain, hail, snow, fog or clouds), high ambient humidity, or gushes of water at takeoff by the wheels (plane) or by the rotor (helicopter). It can substantially modify the operating conditions of the machine, harm combustion and even prevent it entirely by extinguishing the chamber. The extinction can be direct when a large quantity of water suddenly arrives in the combustion chamber, or progressively, with the temperature of the gases decreasing little by little and the combustion taking place more and more poorly.
Among the measures taken to counter these difficulties, takings of air in the compressors have been imagined, in order to withdraw a portion of the air outside the duct, loaded with water by the centrifugation produced by the compressors, and prevent it from reaching the combustion chamber. These takings are however not always sufficient, and also are not provided on all engines. Another means in practice consists in causing the water to stream over a fairing covering the bottom of the combustion chamber and located in front of the diffuser. Such a fairing is also however not always present on all engines, and it can be difficult to optimise if it is added, as there are many parameters to be taken into consideration. It must in any case be pierced, either in order to allow the compressed gas to enter into the combustion chamber between the injectors, or in order to provide other functions: its effectiveness is therefore doubtful with regards to protection against water and moisture.
Recourse here is given to another solution in order to overcome this problem: it is considered here to introduce an azimuth setting between the vanes of the diffuser and the injectors. In other terms, the angular position of the vanes of the diffuser is defined in such a way as to limit the accumulation of water in front of the injectors and have them receive drier air, while still concentrating the water and allowing it to pass between the injectors, therefore without it harming the combustion.
To summarise, the invention relates to an aircraft engine comprising a gas flow duct, a combustion chamber located on the flow duct and a diffuser also located on the flow duct upstream of the combustion chamber. The diffuser is comprised of fixed vanes altering the flow and arranged in a circle. The combustion chamber comprises fuel injectors that have injection orifices arranged in a circle coaxial to the circle of the vanes. It is characterised in that the vanes are arranged angularly with respect to the injectors in such a way that the paths of the flow coming from the trailing edges of the vanes end between the injectors; favourably at middle third angular distances between the injectors; and even more favourably, at a distanced that is angularly mid-way between the injectors.
The diffuser frequently comprises a plurality of successive stages. The invention shall then be applied on the stage of the diffusers that models the most flow downstream, frequently the upstream stage.
The invention is based on water concentrated in the flow passing in front of the intrados of the vanes of the diffuser due to its greater inertia. It is then to be provided that the lines of current, traced from the trailing edge of the vanes, will be all the more so proper for the extinction of the chambers that they pass outside of the injectors, and at a good angular distance between the injectors, or near this mid-way distance. EP-2 123 863-A describes a device with intrados diffuser vanes, which are, taken as a whole, devoid of a favourable azimuth setting, characteristic of the invention.
The invention shall now be described in detail using the following figures:
and
Another type of combustion chamber shall be mentioned, referred to as inverted flow and shown in
Reference is made to
In accordance with the invention, the fixed vanes 15 are placed in such a way that the paths 35 pass at a distance from the injectors 9, between them, favourably in the middle third 37 of their gaps 38, and even more favourably in the middle of these gaps 38;
if the angular pitch of the injectors 9 is equal to γ, and the angle of the paths 35 between the trailing edges 34 and the injectors 9 is equal to β, the azimuth setting α, i.e. the angle between the trailing edges 34 and the injectors 9, shall be at best chosen such that
The situation is exactly the same for an inverted flow chamber such as that of
In the case where the diffuser is composite, such as the one of
If necessary, the paths 35 shall be specified by test modeling calculations.
By passing next to the injectors 9 or 30, the water stream along the combustion chamber or bypasses it entirely before moving away from it.
The application of the invention will often depend on clever choices between the number of vanes of the diffuser and that of the injectors: these numbers must often allow for a common divisor, in such a way as to allow for similar arrangements of groups of the vanes in relation to each one of the injectors. An irregular distribution in the angular direction of the vanes can then by chosen, with the vanes being absent where the paths 35 would lead to the injectors 30. In other types of embodiments, the invention can be applied with regards to certain injectors only, which will then be main injectors, with others having a lesser flow rate. With the injectors all being arranged outside of the reach of the paths 35 according to what precedes, irregular distributions of the injectors in angular pitches could also be considered.
Generally, the azimuth setting assumes a “clocking” between the number of vanes of the diffuser and the number of injectors (these two numbers have a common divisor). There are however particular cases for which the “clocking” is not necessary:
Number | Date | Country | Kind |
---|---|---|---|
14 53165 | Apr 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2015/050882 | 4/7/2015 | WO | 00 |