This invention relates to the field of aircraft control, and more specifically to systems that provide for monitoring of aircraft exhaust gas temperature such as during lean climb conditions.
The present invention relates to avionics. Modern commercial/private aircraft, as well as older aircraft, include a myriad of instrumentation panels associated with electronic devices having controls, displays, and software applications, which are used to present information to pilots and/or copilots during flight. The electronic devices, controls, displays and applications are interfaced together to form avionics equipment within the aircraft. Pilots (where “pilot” includes copilots and any other controller of the aircraft) access one or more interface devices of the avionics equipment prior to and during the flight. Some of the information presented monitors the status of equipment on the aircraft, while other switches and knobs are used to control functions of the aircraft such as throttles (engine speed), switches (lights, radios, etc), levers (landing gear and flaps), and controls for navigation, for example.
Currently, pilots must manually adjust the fuel to air ratio (called mixture) going into the cylinders. As a pilot climbs, the air becomes less dense and therefore the amount of fuel should be reduced as well. The process of adjusting the mixture is commonly called “leaning the engine.” However, to avoid damage to the engine from improper leaning, the pilot must carefully monitor and adjust the mixture at frequent intervals.
Current methods of managing mixture involve monitoring exhaust gas temperature of one or more cylinders, typically showing either a full-range bar graph that displays temperature ranges spanning about 700 degrees F., or an analog temperature display. The large range displayed on the bar graphs makes it difficult to precisely manage the EGT temperature graphically. The analog temperature display can allow for more precise reading of EGT, but does not allow setting (or adjusting) of temperature range reminders, target temperature, change in specification of a reference cylinder, or alerts if the sensed temperature goes out of an adjustable target range. Accordingly, there is a need for methods and apparatuses that provide pilots with more efficient instruments for EGT management during climb.
Other U.S. patents of interest relative to this disclosure include the following, each of which is incorporated herein by reference: U.S. Pat. No. 7,039,518 “Computer method and apparatus for aircraft mixture leaning”; U.S. Pat. No. 4,452,207 “Fuel/air ratio control apparatus for a reciprocating aircraft engine”; U.S. Pat. No. 5,941,222 “Optimizing the efficiency of an internal combustion engine”; U.S. Pat. No. 6,556,902 “Method of monitoring and displaying health performance of an aircraft engine”; and U.S. Pat. No. 6,842,672 “Cockpit instrument panel systems and methods with redundant flight data display”.
A computer-implemented function monitors and displays exhaust gas temperatures (EGT) in a plurality of cylinders in an engine. The lean climb function provides an easy way to read exhaust gas temperature on a specific cylinder, and to provide a means for leaning while in a climb. Efficient leaning in a climb reduces fuel consumption and reduces the chance of harmful conditions that can lead to engine failure.
A method according to the present invention can comprise accepting an indication of a temperature display range, wherein the temperature display range is less than the full range of possible exhaust gas temperatures (e.g., 40%, 20%, or 10% of the full range). A reference cylinder can be specified, and the exhaust gas temperature of the reference cylinder sensed and displayed relative to the indicated display range. The display relative to a reduced range facilitates easier interpretation of the exhaust gas performance by the pilot, facilitating more efficient management of the aircraft.
The present invention can also provide for display of exhaust gas temperatures in multiple cylinders, allowing the pilot a more comprehensive view of the engine's performance. It can also provide for alerts to the pilot if the exhaust gas temperature in the reference cylinder (or, any cylinder) reaches a value that is outside of a predetermined range, normally much smaller than the full range of possible temperatures. The exhaust gas display can be provided in response to requests from the pilot, allowing the instrument panel, and the pilot's attention, to be occupied with exhaust gas temperature display only when that information is relevant to the operation of the aircraft.
An apparatus according to the present invention can comprise sensors mounted with the engine to sense the exhaust gas temperature (or other correlated engine performance parameter) of one or more cylinders of the engine (or of multiple engines in a multi-engine aircraft). A controller such as a single board computer can read the sensors to determine the exhaust gas temperature in each cylinder sensed. The controller can allow a pilot to input a request for an exhaust gas temperature display, and to input desired display ranges, target exhaust gas temperatures, reference cylinder identification, temperatures at which to generate alerts, or combinations thereof. The controller can use the display to communicate to the pilot the exhaust gas temperature of the reference, and optionally other, cylinders, relative to a display range that is less than the full range of possible temperatures. The controller can also highlight temperatures that are near or exceed temperature ranges or limits, and can provide alerts (e.g., audible or visible signals) to the pilot when temperatures are near or exceed temperature ranges or limits.
a,b) are schematic illustrations of a pilot display according to an example embodiment of the present invention.
The present invention provides methods and apparatuses for sensing EGT attributes of an aircraft engine and efficiently communicating those attributes to a pilot. The invention enables a pilot to accurately lean the engine during a climb using a technique of maintaining the EGT of a specific reference cylinder to within a small range of a reference temperature. An indication of the EGT (or the EGT's status relative to the reference temperature) can be communicated to the pilot by, for example, display on a graphic display screen such as a liquid crystal display.
The controller 101 can accept an indication that a display of EGT is desired, for example by accepting an input from the pilot such as a button press or a voice command. The controller 101 can determine the EGT of one or more cylinders from the sensors 104, and access from the memory one or more parameters relative to the display, such as reference cylinder (an indication of a cylinder to highlight in the display, and to use in any alerts or prompts); display range (a range of EGT values to be represented on the display, rather than the full range of possible EGT values as with previous displays); target EGT (an EGT value to be used as a target or desired value); alert values (high or low temperature EGT values that trigger alerts if the EGT in a reference cylinder reaches the value); prompts and values (EGT values and associated prompts such as a “too lean” prompt to be communicated to the pilot if the EGT reaches a certain value). The controller 101 can then communicate the current performance of the engine, as based on the sensed EGT and relative to the parameters read from the memory. As an example, the controller 101 can display a bar graph of the EGT of the reference cylinder, with the upper and lower limits corresponding to the display range, and the actual current EGT value depicted within that range. As another example, the controller 101 can display an alert corresponding to an alert condition, or can communicate an audible alert or prompt if indicated by the current EGT value.
a,b) are schematic illustrations of a pilot display according to an example embodiment of the present invention. In
In
A suitable display panel can comprise appropriate technology for aircraft use. A width of no more than 6.25″ can allow the system to readily fit in a standard radio rack. The system can operate in all temperature ranges expected in the aircraft cockpit environment, for example, typically −30 deg C. to +70 deg C. The screen can be daylight readable, for example with a transflective screen or transmissive screen with a brightness greater than about 500 nits. A suitable switch panel can comprise a portion of a touch sensitive display configured by the controller for pilot input. It can also comprise discrete switches mounted near the display, voice recognition, or remotely mounted switches. Switches can have high quality, gold-plated contacts for desirable reliability. The sensor interface converts analog signals from commercially-available temperature, pressure, and other analog sensors to digital signals that can be processed by the microcomputer. The controllers can be implemented using commercially available switching devices and current sensing devices, with interfaces to the microcomputer.
A suitable controller can be implemented with a conventional single board microcomputer, with discrete logic, with programmable logic, or application specific integrated circuits, or combinations thereof. A typical microprocessor is a Motorola HCS12 or comparable with built-in serial I/O and at least 256 KB of non-volatile memory. A programmable controller implementation can execute software developed using conventional programming techniques such as C programming language.
The particular sizes and equipment discussed above are cited merely to illustrate particular embodiments of the invention. It is contemplated that the use of the invention can involve components having different sizes and characteristics. It is intended that the scope of the invention be defined by the claims appended hereto.
This application claims the benefit of U.S. provisional application 60/853,712, filed Oct. 23, 2006, which is incorporated herein by reference. This application claims the benefit as a continuation-in-part of U.S. patent application Ser. No. 11/311,060, filed Dec. 19, 2005, which is incorporated herein by reference. This application is related to the following applications, each of which is incorporated herein by reference: Aircraft Emergency Handling, U.S. patent application Ser. No. 11/875,813, filed on the same date hereof; Backup Electrical Power System for Solid-State Aircraft Power Distribution Systems, U.S. patent application Ser. No. 11/875,815, filed on the same date hereof; Aircraft Electrical System Evaluation, U.S. patent application Ser. No. 11/875,816, filed on the same date hereof; Variable Speed Flap Retraction and Notification, U.S. patent application Ser. No. 11/875,819, filed on the same date hereof.
Number | Name | Date | Kind |
---|---|---|---|
4127847 | Stifter | Nov 1978 | A |
4191347 | Fueyo | Mar 1980 | A |
4243970 | Hardee et al. | Jan 1981 | A |
4409635 | Kraus | Oct 1983 | A |
4452207 | Moore, Jr. | Jun 1984 | A |
4598890 | Herzog et al. | Jul 1986 | A |
4649484 | Herzog et al. | Mar 1987 | A |
4729102 | Miller | Mar 1988 | A |
5001638 | Zimmerman | Mar 1991 | A |
5082208 | Matich | Jan 1992 | A |
5353657 | Bainbridge, III | Oct 1994 | A |
5497072 | LeComte et al. | Mar 1996 | A |
5723915 | Maher et al. | Mar 1998 | A |
5864221 | Downs et al. | Jan 1999 | A |
5913492 | Durandeau et al. | Jun 1999 | A |
5941222 | Braly | Aug 1999 | A |
6325333 | Najmabadi et al. | Dec 2001 | B1 |
6346892 | DeMers et al. | Feb 2002 | B1 |
6556902 | Ing et al. | Apr 2003 | B2 |
6639522 | Derderian | Oct 2003 | B2 |
6664945 | Gyde et al. | Dec 2003 | B1 |
6700482 | Ververs et al. | Mar 2004 | B2 |
6754567 | Bernard | Jun 2004 | B2 |
6824099 | Jones | Nov 2004 | B1 |
6842672 | Straub et al. | Jan 2005 | B1 |
6859688 | Orf et al. | Feb 2005 | B1 |
7021587 | Younkin | Apr 2006 | B1 |
7039518 | Ingram et al. | May 2006 | B2 |
20020035415 | Gardner | Mar 2002 | A1 |
20020035416 | De Leon | Mar 2002 | A1 |
20030048203 | Clary | Mar 2003 | A1 |
20050187677 | Walker | Aug 2005 | A1 |
20090306839 | Youngquist et al. | Dec 2009 | A1 |
20100076630 | Vian | Mar 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20090306837 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
60853712 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11311060 | Dec 2005 | US |
Child | 11875818 | US |