The present invention relates to aircraft and, more particularly, to a system for decreasing noise propagated by an auxiliary power unit of an aircraft.
Auxiliary power units (“APU”) are used in aircraft to provide electrical power and compressed air to various parts therein. When an aircraft is on the ground, its main source of electrical power comes from the APU. In particular, the APU can power the environmental control systems, air drive hydraulic pumps, and the starters for the engines. When an aircraft is in flight, the APU may provide pneumatic and/or electric power to the aircraft.
Typically, APUs are located in the aft section of the aircraft, at or near the tailcone section and include inlet and exhaust ducting that exit through an opening in the aircraft fuselage to allow sufficient air flow through to the APU. For aircraft on which APUs operate during flight, a ram air door is typically provided to protect the APU from foreign object damage when not in use and/or during ground movement, and to maximize total pressure supplied to the APU when performance at altitude is required.
However, while the ram air door is open, noise may propagate from the APU outward from the aircraft fuselage. The noise typically travels through the inlet duct and is deflected from the interior of the ram air door to sections or service locations of the aircraft that are forward the tailcone. Because many aircraft sections are located forward of the APU, such as, for example, passenger doors, passenger and aircraft personnel cabins, refueling points, and baggage doors, audible noise levels heard by those onboard the aircraft or those on the ground while handling baggage or performing aircraft maintenance may be increased.
Therefore, there is a need for an aircraft assembly that minimizes noise propagation from the APU when a ram air door is open. There is also a need for an aircraft assembly that delivers airflow to the APU with a minimum amount of pressure loss. There is also need for the aircraft assembly to be light weight and inexpensive to manufacture. The present invention addresses one or more of these needs.
The present invention provides an aircraft inlet assembly for damping noise from an auxiliary power unit (“APU”) of an aircraft having a tailcone including a sidewall with a first end and a second end, and an end wall coupled to the sidewall first end. In one embodiment, and by way of example only, the assembly includes a partition disposed within the tailcone and configured to divide the tailcone into a first compartment and a second compartment, the partition including an opening formed therein, an inlet opening formed in the tailcone sidewall in fluid communication with the first compartment, a first inlet duct extending between the inlet opening and the first compartment, an APU disposed within the second compartment, and a second inlet duct extending between the inlet opening and the partition opening to provide communication between the inlet opening and the second compartment.
In another embodiment, and by way of example only, the assembly includes a partition dividing the tailcone into a first compartment and a second compartment, the partition comprising a first wall and a second wall, the first wall disposed between the APU and the tailcone sidewall and extending from the tailcone forward end aft, and the second wall extending from the first wall to the tailcone sidewall, an inlet opening formed in the tailcone sidewall in fluid communication with the first compartment, a first inlet duct extending between the inlet opening and the first compartment, and a second inlet duct extending between the inlet opening and the partition opening to provide communication between the inlet opening and the second compartment.
In still another embodiment, and by way of example only, the assembly includes an inlet opening formed in the tailcone sidewall, a partition disposed in the tailcone and configured to divide the tailcone into a first compartment and a second compartment, the partition having a first opening and a second opening formed therein, a first inlet duct extending between the inlet opening and the first compartment to provide communication therebetween, a second inlet duct extending between the inlet opening and the partition first opening to provide communication between the inlet opening and the second compartment, an APU disposed within the second compartment, and a side plenum defined in part by the tailcone sidewall to provide communication between the partition second opening and the APU.
Other independent features and advantages of the preferred aircraft inlet assembly will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
Turning now to the description,
The first inlet duct 124 is defined between an inlet 122 and a first outlet 128 and directs air to the first compartment 116. The second inlet duct 126 is defined between the inlet 122 and a second outlet 130, and extends through an opening 142 in the partition 110 to provide air to the second compartment 118.
The first compartment 116 isolates and dampens noise that propagates from the APU 136. The noise may be dampened in several ways. In one exemplary embodiment, the first compartment 116 may have one or more sections of acoustically-treated material 132 disposed therein. The acoustically-treated material 132 may be any suitable material capable of damping noise, such as, for example, a porous facesheet bonded to a honeycomb material, a porous facesheet having baffles therein, or a bulk material with or without a facesheet. Additionally, the acoustically-treated material 132 may be disposed in any section of the first compartment 116. In one example, as shown in
Returning to
The second compartment 118 houses the APU 136 and is configured to receive air from the second inlet duct 126 to cool the second compartment 118 and provide air to an oil cooler 137 and eductor system 139 on the APU 136 for cooling oil within the APU 136. The exhaust opening 140 is formed in the sidewall 102 proximate the aft end 106 and communicates with the APU 136 to allow byproducts therefrom to exit the tailcone 100. Similar to the first inlet duct 124, the second inlet duct 126 may be defined as a curved wall dump diffuser to minimize inlet pressure losses.
It will be appreciated that the first compartment 116 and second compartment 118 may have any one of numerous configurations that depend upon the configuration of the partition 110. In one exemplary embodiment, as shown in
The partition 110 may also include a second opening 144 coupled to a side channel 146 that directs air from the first compartment 116 to the APU 136. The side channel 146 may be positioned along any portion of the aircraft, such as, for example along the side of the second compartment 118 as shown in
In another exemplary embodiment, as shown in
Turning now to
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/647,923, filed Jan. 27, 2005.
Number | Date | Country | |
---|---|---|---|
60647923 | Jan 2005 | US |