The present invention relates generally to aircraft power connectors, and more particularly to a new and improved aircraft power connector which has a dual-position force level determination mechanism integrally incorporated thereon that effectively provides the new and improved aircraft power connector with differential, relatively low insertion force and relatively high operational retention force levels so as to respectively permit operational personnel to easily mount and mate the new and improved aircraft power connector upon and with the onboard aircraft electrical connector when the new and improved aircraft power connector is to be electrically connected to the onboard aircraft electrical connector, while alternatively ensuring that the electrical connection, once the same has been established between the new and improved aircraft power connector and the onboard aircraft electrical connector, will in fact be assuredly maintained during the time that the new and improved aircraft power connector, and its associated electrical power cable, are electrically connected to the onboard aircraft electrical connector in order to provide electrical power to the aircraft during those time periods that the aircraft is, for example, on the ground and being serviced at the aircraft terminal between flights.
When an aircraft, whether it comprises a military aircraft or a commercial airliner, is being serviced, a mobile ground power cart is usually moved toward and located near the aircraft so as to be capable of supplying necessary electrical power by means of a suitable electrical power cable. Normally, of course, electrical power for the aircraft is self-generated on board the aircraft by means of suitable generator apparatus which is adapted to be normally driven by means of the aircraft's engine or engines. In order to provide the aircraft with such externally generated electrical power, the aircraft is of course provided with a suitable electrical connector, and the electrical power cable disposed upon the mobile ground power cart is provided with a suitable aircraft power connector which is adapted to be electrically connected to the onboard aircraft electrical connector. As may well be appreciated, when the aircraft power connector of the mobile ground power cart power cable is to be electrically connected to the aircraft electrical connector disposed upon the aircraft, it is imperative that the retention force, that has been developed or established between, for example, the female receptacle portions of the electrical connector contact pins of the aircraft power connector, and the male electrical connector contact pins disposed upon and projecting outwardly from the onboard aircraft electrical connector, be sufficiently large such that the integrity of the electrical connection, which has been established between the aircraft power connector and the onboard aircraft electrical connector, will not be inadvertently adversely compromised or interrupted throughout the entire time period that the mobile ground power cart is being used to supply electrical power to the aircraft.
However, if the aforenoted retention force, that has been developed or established between the aircraft power connector and the onboard aircraft electrical connector, is sufficiently large such that the integrity of the electrical connection, which has been established between the aircraft power connector and the onboard aircraft electrical connector, will not be inadvertently adversely compromised or interrupted throughout the entire time period that the mobile power cart is being used to supply electrical power to the aircraft, then it is to be additionally appreciated that the insertion force, that is required to initially establish the electrical connection between the aircraft power connector and the onboard aircraft electrical connector, will likewise be sufficiently large. A sufficiently large insertion force, however, sometimes presents procedural problems or difficulties for operational personnel in that the onboard aircraft electrical connector is not always disposed at a location upon the aircraft which is easily or readily accessible to operational personnel. For example, the onboard aircraft electrical connector may be disposed at a location which is relatively inaccessible or at least difficult to access by operational personnel. Alternatively, the onboard aircraft electrical connector may be located at a relatively high elevational position. Alternatively, still further, the onboard aircraft electrical connector may be disposed at a location which requires operational personnel to access it only from a particular direction or angular orientation. Accordingly, under any one of the aforenoted conditions, when operational personnel seek to establish the electrical connection between the aircraft power connector and the onboard aircraft electrical connector, the operational personnel may not always be able to exert the relatively large insertion force which is required to in fact establish the electrical connection between the aircraft power connector and the onboard aircraft electrical connector.
A need therefore exists in the art for a new and improved aircraft power connector which effectively exhibits differential insertion and operational retention forces such that operational personnel are readily able to initially establish an electrical connection between the aircraft power connector and the onboard aircraft electrical connector with a relatively minimal force exertion level, regardless of the particular location or accessibility of the aircraft electrical connector disposed on board the aircraft, and yet once the electrical connection is in fact established between the aircraft power connector and the onboard aircraft electrical connector, the retention force level, between the aircraft power connector and the onboard aircraft electrical connector, can be significantly enhanced or sufficiently high such that the electrical connection, that has been established between the aircraft power connector and the onboard aircraft electrical connector, will be assuredly maintained and not be inadvertently adversely compromised or interrupted. Still yet further, when the electrical connection between the aircraft power connector and the onboard aircraft electrical connector is in fact to be discontinued, such as, for example, when the servicing of the aircraft has been completed, the retention force level, maintaining the aircraft power connector electrically connected to the onboard aircraft power connector, can in fact be intentionally reduced so as to permit the aircraft power connector to in fact be easily and readily disconnected from the onboard aircraft electrical connector.
The foregoing and other objectives are achieved in accordance with the teachings and principles of the present invention through the provision of a new and improved aircraft power connector which comprises an aircraft power connector housing within which there is provided a plurality of electrical connector pins, such as, for example, six electrical connector pins, wherein the six electrical connector pins are arranged within a standard array of two rows of electrical connector pins, with three electrical connector pins disposed within each row, so as to match the standard array of six male electrical connector pins disposed upon and projecting outwardly from the onboard aircraft electrical connector. The internal bores of the female receptacle end portions of the electrical connector pins, disposed upon the aircraft power connector, are slightly enlarged such that when the female receptacle end portions of the electrical connector pins, disposed upon the aircraft power connector, are to be engaged and mated with the male electrical connector pins, disposed upon and projecting outwardly from the onboard aircraft electrical connector, the electrical connection between the female receptacle end portions of the electrical connector pins, disposed upon the aircraft power connector, and the male electrical connector pins, disposed upon and projecting outwardly from the onboard aircraft electrical connector, can be easily and readily established with a reduced insertion force level.
A slot is formed within the female receptacle end portion of the aircraft power connector housing, which is to be physically and electrically mounted upon and mated with the male electrical connector pins disposed upon and projecting outwardly from the onboard aircraft electrical connector, such that the slot is interposed between the two rows of electrical connector pins disposed upon the aircraft power connector housing, and a transversely extending elongated force-transmission cam plate member is disposed within the slot such that oppositely disposed end portions of the elongated force-transmission cam plate member project outwardly from the aircraft power connector housing so as to be fixedly connected to first oppositely disposed end portions of a pair of substantially L-shaped lever members. An operating handle mechanism is pivotally mounted between second oppositely disposed end portions of the pair of lever members so as to be movable between first and second operative positions, and the operating handle mechanism includes a secondary cam member which is adapted to be correspondingly moved between first and second operative positions. Accordingly, when, for example, the operating handle mechanism and the secondary cam member are disposed at their first operative positions, the cam plate member will be disposed at a first non-camming position so as to permit the female receptacle end portions of the electrical connector pins, disposed upon the aircraft power connector, to be readily and easily engaged with the male electrical connector pins disposed upon and projecting outwardly from the onboard aircraft electrical connector in accordance with the aforenoted reduced insertion force level.
Conversely, when the operating handle mechanism and the secondary cam member are moved so as to be disposed at their second positions, subsequent to the mating of the aircraft power connector with the onboard aircraft electrical connector, the cam plate member will be disposed at a second camming position so as to effectively force one of the rows of female receptacle end portions of the electrical connector pins, disposed upon the aircraft power connector, into enhanced frictional contact with a corresponding row of the male electrical connector pins disposed upon the onboard aircraft electrical connector so as to effectively significantly enhance the retention force level established between the aforenoted row of female receptacle end portions of the electrical connector pins, disposed upon the aircraft power connector, and the corresponding row of male electrical connector pins disposed upon the onboard aircraft electrical connector, thereby effectively preventing inadvertent disconnection of the aircraft power connector from the onboard aircraft electrical connector. Continuing further, when in fact the electrical connection between the aircraft power connector and the onboard aircraft electrical connector is to be discontinued, such as, for example, when the servicing of the aircraft has been completed, the operating handle mechanism and the secondary cam member are returned to their first positions thereby effectively alleviating the enhanced retention force level within the electrical connection defined between the aircraft power connector and the onboard aircraft power connector, and effectively reestablishing the reduced insertion force level within the electrical connection defined between the aircraft power connector and the onboard aircraft power connector, whereby the aircraft power connector can now be easily and readily disconnected and released from the onboard aircraft power connector.
Various other features and attendant advantages of the present invention will be more fully appreciated from the following detailed description when considered in connection with the accompanying drawings in which like reference characters designate like or corresponding parts throughout the several views, and wherein:
Referring now to the drawings, and more particularly to
It is noted that, when a conventional aircraft power connector, similar to the aircraft power connector 10 of the present invention, is to be electrically connected to the aircraft electrical connector 16, the retention force, that is developed or established between, for example, the female receptacle portions of the electrical connector contact pins of the conventional aircraft power connector and the male electrical connector contact pins 20 of the aircraft electrical connector 16, is intentionally designed to be sufficiently large and relatively high, such as, for example, to be within the range of 80 lb±20 lb, such that the integrity of the electrical connection, which has been established between the conventional aircraft power connector and the onboard aircraft electrical connector 16, will not be inadvertently adversely interrupted or otherwise compromised throughout the entire time period that the conventional aircraft power connector and its associated electrical cable, similar to the aircraft power connector 10 and the electrical cable 14, are being used to supply electrical power to the aircraft. This retention force is a function of, for example, the friction or interference fit defined between the external or outside diameter dimensions of the male electrical connector contact pins 20 disposed upon the aircraft electrical connector 16 and the internal or inner diameter dimensions of the female receptacle portions of the electrical connector contact pins disposed within the conventional aircraft power connector.
However, it is additionally noted that, if such retention force, that has been developed or established between the conventional aircraft power connector and the onboard aircraft electrical connector 16, is sufficiently large or relatively high such that the integrity of the electrical connection, which has been established between the conventional aircraft power connector and the onboard aircraft electrical connector 16, will not be inadvertently adversely compromised or interrupted throughout the entire time period that the conventional aircraft power connector and its associated electrical cable, similar to the aircraft power connector 10 and the electrical cable 14, are being used to supply electrical power to the aircraft, then the insertion force, that is required to initially establish the electrical connection between the conventional aircraft power connector and the onboard aircraft electrical connector 16, will likewise be large or relatively high. As has been noted hereinbefore, such a relatively large or high insertion force level will sometimes present procedural problems or difficulties for operational personnel in connection with the establishment of the electrical connection between the conventional aircraft power connector and the onboard aircraft electrical connector 16.
In accordance with one of the principles and teachings of the present invention, the internal or inner diameter dimensions of the female receptacle portions of the electrical connector contact pins disposed within the aircraft power connector housing 12 are enlarged to a predetermined degree, such as, for example, one thousandth of an inch (0.001″) with respect to the external or outside diameter dimensions of the male electrical connector contact pins 20 disposed upon the aircraft electrical connector 16. In this manner, the insertion force which is required to initially mate the aircraft power connector 10 with the aircraft electrical connector 16, and which is a function of, for example, the friction or interference fit defined between the internal or inner diameter dimensions of the female receptacle portions of the electrical connector contact pins disposed within the aircraft power connector housing 12 and the external or outside diameter dimensions of the male electrical connector contact pins 20 disposed upon the aircraft electrical connector 16, is able to be substantially reduced to a more manageable level, such as, for example, within the range of 20 lb±5 lb.
While the insertion force level characteristic of the new and improved aircraft power connector 10 of the present invention has effectively been reduced in accordance with the aforenoted structure so as to enable operational personnel to easily and readily achieve the physical and electrical connection between the female receptacle portions of the electrical connector contact pins disposed within the aircraft power connector housing 12 and the male electrical connector contact pins 20 disposed upon the aircraft electrical connector 16, it is of course to be appreciated that such force level, as defined between the female receptacle portions of the electrical connector contact pins disposed within the aircraft power connector housing 12 and the male electrical connector contact pins 20 disposed upon the aircraft electrical connector 16, is not in fact sufficient to assuredly retain the aircraft power connector 10 and the aircraft electrical connector 16 physically and electrically connected to each other. Therefore, additional means must be provided upon the new and improved aircraft power connector 10 of the present invention in order to effectively raise or enhance the force level, defined between the female receptacle portions of the electrical connector contact pins disposed within the aircraft power connector housing 12 and the male electrical connector contact pins 20 disposed upon the aircraft electrical connector 16, such that subsequent to the physical and electrical connection together of the aircraft power connector 10 with the aircraft electrical connector 16, the connection defined between the aircraft power connector 10 and the aircraft electrical connector 16 will assuredly be retained.
With reference therefore now being made to
In order to actuate or rotatably move the force-transmission cam plate member 26 between its first and second limit positions, a pair of lever members 34, 34, each one of which has a substantially L-shaped configuration, are operatively connected to the oppositely disposed end portions 28, 28 of the force-transmission cam plate member 26. More particularly, as can best be appreciated from
Continuing further, in order to actuate or rotatably move the pair of lever members 34, 34, an actuating handle assembly is operatively associated with the second end portions 42, 42 of the lever members 34, 34. More particularly, the actuating handle assembly comprises a handle 54 having a substantially T-shaped configuration, a rotary member 56 rotatably mounted, around its longitudinal axis, through means of its oppositely disposed end portions being disposed within the through-bores 40, 40 defined within the second opposite end portions 42, 42 of the oppositely disposed lever members 34, 34, and a secondary cam member 58 fixedly mounted upon the distal end of the handle 54. The handle 54 comprises a transversely oriented finger or hand-grasping portion 60, and a shaft portion 62 which is adjustably mounted within the rotary member 56. The shaft portion 62 may be fabricated, for example, from a structural member having a hexagonal cross-sectional configuration, such as, for example, an Allen wrench, and it is additionally to be appreciated that the upper end portion of the shaft member can be bent 90° in a first direction and then bent again, in effect back upon itself 180° in the opposite direction, so as to effectively form an integrally connected transversely oriented structural member that forms the internal cross-member of the hand-grasping portion 60. A suitable thermoplastic material may then be molded over the upper end portion of the shaft member and the cross-member so as to form the hand-grasping portion 60.
With reference being additionally made to
Still further, in order to fixedly secure each one of the set screws 68 at its engaged position with the shaft portion 62 of the handle 54, an externally threaded jam nut or jam set screw 74, as illustrated within
With reference again being made to
Continuing further with the description of the structure of the secondary cam member 58, and the mounting of the same onto the distal end portion of the handle 54, and with reference being particularly made to
Still further, as was the case with the structural assembly comprising the rotary member 56, in order to fixedly secure each one of the set screws 68 at its engaged position with the distal end portion of the shaft portion 62 of the handle 54, an externally threaded jam nut or jam set screw 74, similar to that illustrated within
Having described the various structural components comprising the new and improved aircraft power connector 10 of the present invention, the mode of operation of using the new and improved aircraft power connector 10 of the present invention, in order to achieve the relatively low insertion or engagement force and relatively high retention force levels characteristic of the aircraft power connector 10 of the present invention, will now be described. More particularly, when the actuating handle assembly is disposed at the position illustrated within any one of
Subsequently, when it is desired to increase the force level defined between the female receptacle portions of the electrical connector contact pins disposed within the aircraft power connector housing 12 and the male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16 in order to achieve a relatively high retention force level therebetween, the handle 54 is rotated in the counterclockwise direction around the rotary axis defined by means of the rotary member 56 such that the secondary cam member 58 is initially moved from its disposition illustrated within, for example,
Recalling the fact that the force transmission cam plate member 26 is disposed within the slot 24 which has been formed between the upper and lower rows of electrical connector bores 22 defined within the forward end portion of the aircraft power connector housing 12, and within which the female receptacle portions of the electrical connector contact pins of the aircraft power connector 10 are disposed, the aforenoted rotational or pivotal movement of the force transmission cam plate member 26 will effectively cause the lower half of the forward end portion of the aircraft power connector housing 12, and the female receptacle portions of the electrical connector contact pins disposed within such lower half of the forward end portion of the aircraft power connector housing 12, to move downwardly a predetermined amount, not only with respect to the upper half of the forward end portion of the aircraft power connector housing 12, but in addition, with respect to the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16. As may therefore well be appreciated, this predetermined downward movement of the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector 10, with respect to the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16, effectively causes a predetermined amount of coaxial misalignment to be developed between the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector housing 12, and the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16. Accordingly, such a predetermined amount of coaxial misalignment developed between the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector housing 12, and the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16, results in enhanced or increased surface-to-surface and frictional contact to be developed between the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector housing 12, and the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16.
In turn, such enhanced or increased surface-to-surface and frictional contact, developed between the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector housing 12, and the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16, results in enhanced or increased retention engagement forces to be developed between the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector housing 12, and the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16. Accordingly, the disengagement resistance forces between the lower row of female receptacle portions of the electrical connector contact pins, disposed within the aircraft power connector housing 12, and the lower row of male electrical connector contact pins 20 mounted upon the onboard aircraft electrical connector 16, will likewise be enhanced.
It is to be further noted that the actuating handle assembly, comprising the handle 54, the rotary member 56, and the secondary cam member 58, effectively comprises an over-center locking mechanism whereby when the handle 54 is rotated in the counterclockwise direction to its fully LOCKED position, as illustrated within
Lastly, it is of course to be appreciated that when the aircraft power connector 10 is to be intentionally disconnected from the aircraft electrical connector 16, such as, for example, when servicing of the aircraft has been terminated, the handle 54 is rotated in the reverse, clockwise direction from its position illustrated within
Thus, it may be seen that in accordance with the principles and teachings of the present invention, there has been disclosed a new and improved aircraft power connector, adapted for electrical connection to an aircraft electrical connector, which has incorporated thereon a dual-position mechanism which can effectively alter the engagement force level defined between the electrical connector contact pins of the aircraft power connector and the aircraft electrical connector. When the dual-position mechanism is disposed at a first one of its two positions, the force level defined between the electrical connector contact pins of the aircraft power connector and the aircraft electrical connector is relatively low so as to easily and readily permit connection and disconnection of the aircraft power connector to and from the aircraft electrical connector, whereas when the dual-position mechanism is disposed at a second one of its two positions, the force level defined between the electrical connector contact pins of the aircraft power connector and the aircraft electrical connector is relatively high so as to ensure the connection of the aircraft power connector to the aircraft electrical connector and to prevent the inadvertent disconnection of the aircraft power connector from the aircraft electrical connector.
Obviously, many variations and modifications of the present invention are possible in light of the above teachings. For example, while the slot 24 has been formed within the aircraft power connector housing 12 in order to permit the insertion of the force transmission cam plate member 26 therewithin, the force transmission cam plate member 26 may effectively be encapsulated within the aircraft power connector housing 12 when the same is molded from its suitable, rubber-type material. Accordingly, despite the fact that the force transmission cam plate member 26 is encapsulated within the molded aircraft power connector housing 12, the inherent resilience, characteristic of the rubber-type material, permits the force transmission cam plate member 26 to undergo sufficient movement in order to enhance the force level to be developed between the electrical connector contact pins of the aircraft power connector and the aircraft electrical connector. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
This application claims priority to U.S. Provisional Application No. 60/781,842, filed on Mar. 13, 2006, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1119864 | Ovington | Dec 1914 | A |
3643202 | Coon | Feb 1972 | A |
Number | Date | Country | |
---|---|---|---|
20100029123 A1 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
60781842 | Mar 2006 | US |